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CHAPTER 1
INTRODUCTION

The printed circuit transmission line has become an integral part
of many high frequency circuit applications, creating an ever
increasing demand for accurate theoretical predictions of circuit
performance. While approximate formulations were acceptable in the
past, rising performance expectations as well as the desire for
circuits that don’t require post-production tuning have made the use of
more exact formulations necessary. This report uses exact formulations
to address four major areas of concern in high frequency printed
circuit design; complex microstrip structures (multiple lines and/or
dielectric layers), coupling between lines, distortion of non-periodic
signals on complex structures, and a new method to control coupling on
multilayer structures, as well as presenting numerical results for each
of these areas. This chapter discusses the uses of microstrips,
discusses the various types of approaches used to solve the above
mentioned problems, and outlines the solution methods and numerical

results presented in this report.

1.1 History and Applications of Microstrips
While the use of printed circuit transmission lines is a
relatively recent development, today its technology is considered to be

mature. The first printed circuit transmission line, the strip line,



was developed in World War II while the microstrip was first proposed
and investigated in the early fifties. Yet, by 1955, the IRE
Transactions on Microwave Theory and Techniques [1] devoted an entire
issue to the research and design of this new form of microwave
circuitry. Early research in this field was concerned with calculating
the low frequency parameters of the microstrip using a quasi-static TEM
approach. Demands for higher operating frequencies, shorter pulse
widths, and smaller circuit dimensions required that researchers
address the frequency dependent nature of the microstrip parameters.
Today, the research field is concerned with obtaining more rigorous
solutions of complex microstrip structures that include:

1. Multiple dielectric layers.

2. Multiple conductors on different layers.

3. Anisotropic dielectrics.

4. Operating frequencies that approach the optical range.

5. Discontinuities in the line.

6. Losses in the conductors and the dielectrics.

7. Losses due to radiation.
The design of microwave integrated circuits has become very advanced,
so that there are several commercial computer aided design packages on
the market [2]. Thus microstrip circuit design has become sufficiently
advanced to be considered a mature technology.

In spite of the microwave integrated circuit'’s (MIC's) low power
handling capabilities, it enjoys increasing popularity due to its many
advantages over waveguide and coaxial lines. MIC’s are relatively

inexpensive to make and the fabrication process is simple. Because of



its planar structure, modern surface mounted components, such as GaAs
FET's, are easily included in the circuit structure, giving the MIC
circuit a low profile and reduced weight. MIC’s are very versatile so
that most of the common passive devices, such as inductors, capacitors,
and resistors, can be realized using microstrips, eliminating the need
to add these passive devices as discrete components. In addition,
MIC’s can be used to make phase shifters, mixers, amplifiers, filters,
power dividers, power combiners, and directional couplers. As an
antenna, the MIC is often used on the exterior skin of aircraft and
missiles because its low profile does not affect the aerodynamics of
the vehicle.

MIC’s are currently being used in a wide range of high fregquency
applications that affect all fields of electrical engineering. MIC
components have been designed to operate in the UHF, microwave, and
millimeter wave regions, and its use is being extended into the low
optical frequencies. Current practical applications include high speed
digital transmission and optcelectronic switches. Microstrips have
even been applied to pulse shaping for a laser used to start a fusion

reaction [3].

1.2 The Effective Dielectric Constant of a Single Microstrip

One of the most common figures of merit used when describing a
microstrip line is the frequency dependent effective dielectric
constant, Creff(f)' The frequency dependence of € off is due to the

discontinuity of the dielectric at the conductor interface, prohibiting

the propagation of a pure TEM mode. This frequency dependence is



responsible for the microstrip’s dispersive behavior at higher
frequencies, which, in general, is an undesirable property. Although
the early efforts in research emphasized the use of a TEM mode or
quasi-static approximation, later work in the field approaches the
problem from an exact modal or so called full wave solution.

The first attempts at solving for er were approximations that

eff
attempted to model the microstrip as a variation of a simpler
electromagnetic problem. Conformal mapping of the microstrip structure
was used [4], which transforms the geometry of the microstrip into a
simpler coordinate system and then solves the quasi-static boundary
value problem. The microstrip was also modeled as a ridged waveguide
and the solution obtained in terms of longitudinal side electric (LSE)
modes [5]. More recently a coupled mode approach has been used, where
a TEM is coupled to either at TMo mode [6], [7] or a TE0 mode [8]-[10]
to solve the boundary conditions.

As computers became more inexpensive and prevalent, methods were
introduced that solved, numerically, the microstrip boundary value
problem in spatial variables. These methods, known as spatial domain
techniques, achieve answers in the form of a set of simultaneous linear
equations that must be solved with a matrix inversion. The
formulations are exact in the limit as tﬁe number of equations are
increased, but large amounts of computer time are required to achieve
high accuracy. One spatial domain approach is to formulate a singular
integral equation for the microstrip [11], [12] which results in the
system of linear equations. Another approach is to use the finite

difference method [13], [14]) which uses Maxwell’s equations in its



first order differential form to specify the fields at a set of
discrete points. The first order derivatives are calculated using a
difference approximation to create the set of linear equations.
Dekelva [15] used a moment method approach, enforcing the boundary
conditions at a discrete number of points to achieve results for € off"
Mode matching [16], [17) splits the microstrip into different regions
where the boundary conditions are uniform. The fields in each region
are expanded into an infinite set of modes that satisfy the boundary
conditions of the particular region. Then the continuity of the fields
between regions is enforced by equating the modal sets at the
boundaries of each region.

In an effort to reduce the amount of computer time used by the
spatial domain techniques while retaining the accuracy of an exact
formulation, the Spectral Domain Approach (SDA) was introduced [18].
The SDA begins the solution of the boundary value problem by Fourier
transforming the spatial domain fields into the spectral domain. This
transformation greatly simplifies the formulation of the boundary value
problem and allows accurate results with minimal computer time. Early
work with the SDA approached the problem assuming TE” and T™M® modal
configurations for the fields [19]-[21]. While this approach yields
the correct answers, as guaranteed by the uniqueness theorem, its
derivation is lengthy and complex. To simplify this derivation, TeY
(LSE) and 'I‘My (LSM) modal configurations were also used, [22], [23],
since the microstrip structure closely resembles the partially filled

dielectric waveguide. Using this modal configuration, the derivation

is simplified and there is less chance for error. The SDA has become



perhaps the most popular technique for solving microstrip problems and
in 1985, IEEE Transactions on Microwave Theory and Techniques published
an invited paper [24] which contains a relatively complete history and

description of the SDA as well as an extensive bibliography.

1.3 Coupled Microstrips

While research of single isolated microstrips is important, the
effects of neighboring conductors must also be considered in practical
circuit design. The simplest structure that can be used to study these
effects is the symmetric coupled microstrip, where the presence of the
second conductor adds another degree of complexity to the solution of
the boundary value problem. However, it is possible to split this
problem into two simpler ones that can easily be solved by utilizing
the concept of even and odd modes, proposed by Wheeler in 1956 [25].
This method is described in detail in Chapter 2. When the structure is
not symmetric, the problem can be split into a similar pair of modes,
usually referred to as ¢ and m modes [26].

As with the single microstrip, early research centered on
obtaining easily computed approximate equations to describe the

frequency dependence of cr Many of the approaches used for single

eff’
microstrips have also been used for the computation of coupled
microstrips, such as conformal mapping [27], an LSE capacitance model
[28]), and a parallel plate waveguide model [29]. 1In addition, some
curve fitted formulas have also been presented, using both experimental

data [30] and results computed with the spectral domain approach [31].

Although these approximate formulas are useful, their application is



limited to a few specific cases. To be able to consider more general
structures with high accuracy, full wave methods are used, as in the
case of the single microstrip.

Like the approximate modelings, exact formulations for coupled
microstrips closely parallel the derivations for single microstrips.
Also like the single microstrip formulations, the boundary value
prob;em can be solved in either the spatial or spectral domain.
Solutions for the spatial domain are given by Krage and Haddad [32] by
expanding the fields into an infinite set of modes in each medium and
~enforecing, numerically, the vanishing of the electric field on the
center conductors. The spectral domain, however, is the easiest of all
methods to extend the solution from a single conductor to multiple
conductors because it uses a Green’s function approach. This appreoach
formulates the boundary value problem assuming only a point source at
first. The solution for the actual structure is obtained by using
superposition of the point sources to represent the actual current
densities. Thus the Green’s function derived for the single microstrip
can be used without modification for the coupled microstrip problem.
The spectral domain has been applied to single [33] and multiple

substrate [34] coupled microstrip structures.

1.4 Pulse Dispersion
For single frequency (CW) operation on a microstrip, it is

sufficient to know only a single value of € which can then be used

reff’

to compute most of the other parameters of interest. However, if

either non-periodic or wide band signals are to be used on the



microstrip, then it is important to study the effects of the freguency

dependence of er on the signal. Since the microstrip, as a

eff
transmission line, is dispersive (the phase velocity is a function of
frequency), its response must be analyzed in the frequency domain,
whereas a component whose response in time is non-linear, such as
transistors or diodes, must be analyzed in the time domain. There are
three different methods for determining the time domain response of a
dispersive transmission line;

1) Represent the transmission line as a set of matrix parameters,
such as ABCD or S parameters.

2) Compute the inverse Fourier transform of the product of the
frequency domain transfer function of the line and the Fourier
transform of the signal.

3) Model the structure using the time domain finite difference
method.

The transmission line parameter approach has been used in
conjunction with the microstrip [35], [36], where the matrix parameters
were determined using approximate formulas. Although this approach is
useful for cases where the transmission line has unmatched loads,
accurate computation of the matrix parameters requires additional
effort that is not necessary with the Fourier transform method. The
time domain finite difference method [14] is similar to the finite
difference approach used to find the effective dielectric constant,
except that the time derivatives approximated as well as the spatial
derivatives. This additional degree of freedom greatly increases the

complexity of the derivation, as well as the numerical expense.



The Fourier transform method, using both approximate formulas and
full wave solutions to determine ereff(f)' has been widely used for
determining the time domain response of microstrip and coplanar
waveguide (CPW) structures to non-periodic signal inputs. Using

approximate formulas for er (f) sacrifices the accuracy of the full

eff
wave solution, but drastically reduces the required computer time.
Graphs of distorted pulses using approximate formulas for the single
microstrip have been presented [3], [37]-[41], with experimental
results shown in [38], [42]. CPW’s have also been examined with
approximate formulas [43]. Numerical predictions of pulse distortion
using full wave solutions have been investigated for both the single
microstrip [44]-[46] and for CPW’'s [47], [48]. However pulse

distortion on coupled microstrips has not been examined from a full

wave perspective, or for very general structures.

1.5 Scope of Research

Decreasing computational costs coupled with increasing
computational speed have made the rigorous analysis of microstrip
boundary value problems a practical choice for calculating highly
accurate solutions. This report formulates full wave solutions of the
boundary value problem to achieve expressions that can be solved for
the frequency dependent parameters of very general microstrip
structures. The versatility of the derivations is emphasized, allowing
many different microstrip circuit problems to be solved. Since the
accuracy of the solutions was the prime concern, extensive optimization

of the computer programs in order to reduce run time was not attempted.



While there are many single frequency applications for
microstrips, the propagation of non-periodic signals on printed circuit
lines is also an important concern, and so the degradation of pulsed
signals is considered in this report. The use of the time domain
Fourier transform for the calculation of transient response is
discussed, with the emphasis on application to non-periodic signals.
The Fourier transform method is then applied in conjunction with
results from other sections to predict pulse distortion on complex
microstrip structures. The types of complex microstrip structures
dealt with include;

1) Multiple dielectric substrates and superstrates.

2) Symmetric coupled conductors.

3) Shielded and open configurations.

The derivations for pulse distortion and other parameters are done in a
efficient and general manner, so that the computations are both
flexible and expedient.

The coupling between adjacent center conductors on the microstrip
structure is analyzed, since such results are vital for any realistic
microstrip circuit design. The concept of even and odd modes is
introduced and is then extended so that any number of symmetrically
center conductors can be analyzed. This approach emphasizes the
versatility of the spectral domain approach, because no modification of
the Green’s function is necessary for computation. Results for pulse
dispersion on multiple conductors are presented, showing not only the
signal degradation due to coupling, but also the effect of crosstalk on

adjacent lines.
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Since modern microwave circuit design involves structures that are
much more complicated than the simple single conductor, single layer,
open microstrip, the Green’s function is formulated in a very general
manner so that it is applicable to any planar geometry. First, the
spectral domain approach is discussed for a simple structure to
illustrate how the Green’s function is used to calculate the microstrip
parameters. Next, The Green’s function for an arbitrary planar
microstrip structure is derived using a rigorous full wave solution,
giving a simple recurrence formula for its calculation. Using this
Green’s function, calculations of the effective dielectric constant for
multiple dielectric structures are given, showing the effect of cover
layers and substrate layers on the frequency dependence of both
multiple and single lines. These results will lead to the design of
multi-conductor structures that have small or no coupling between
lines. Finally, pulse dispersion on these lines is presented, showing
the decrease in both signal distortion and crosstalk.

Using exact formulations whenever possible, highly accurate
results for microstrip parameters and pulse distortion are computed.
The time domain Fourier transform is used to calculate pulse distortion
on complex microstrip structures. The coupling between adjacent center
conductors is considered using an even/odd mode formulation. Using a
rigorous boundary value method, a generalized Green’s function is
derived for arbitrary planar structures. Numerical results for pulse
distortion on complex microstrip structures are presented including
shielded and open configurations, multiple dielectric layers, and

coupling with adjacent center conductors.
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CHAPTER 2
FULL WAVE ANALYSIS OF MICROSTRIP

This chapter considers the microstrip structure in an exact
formulation. First the various types of lines that can be treated
using this approach are described, and the geometry used for the
derivation is presented. Next, the Fourier transform used in the
derivation is introduced and the various terms and conventions used
throughout the report are defined. Then the spectral domain approach
is applied to a simple structure, the shielded microstrip, to
illustrate the use of this method. This derivation is then modified
to better handle slot line type structures. Finally, a simple
recursive formulation for the Green’s function of a generalized planar

structure is presented.

2.1 The Microstrip Structure

There are many different types of printed circuit transmission
lines, each appropriate for different applications, all of which can be
solved using the Spectral-Domain Approach (SDA). Four types of these
transmission lines are shown in Fig. 2.1; microstrip, coupled
stripline, coplanar waveguide (CPW), and slot line. Of the four,
microstrips have the lowest dispersion, high Q, and highest power
handling capabilities, and while series mounting of devices is easy,

shunt mounting is very difficult. On the other hand the CPW can mount



\

(a) Microstrip

(b) Coplanar Waveguide

(c) Slot line

(d) Coupled Striplines

Fig. 2.1. Common planar waveguide structures.
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both series and shunt elements easily and can have a high Q [49],
however it has average power handling, and dispersion characteristics.
The slot line allows easy mounting of shunt elements, but has
difficulty with series components. In addition, it suffers from high
radiation losses, low Q, low power capabilities, and is highly
dispersive. Finally, the coupled strip line offers a wide range of
characteristic impedances, but has a low Q, average power handling, and
average dispersion characteristics.

The microstrip geometry used for the derivation of the SDA’s
Green’s function, as well as for the computation of the current density
expansion functions, is shown in Fig 2.2. A standard right-handed
cartesian coordinate system is used (the z axis is out of the paper),
and the structure is considered to be uniform in the z direction,
reducing it to a two-dimensional problem. There are N planar
dielectric layers below the center conductor interface and M layers
above it, where the height of the ith layer, upper or lower, is denoted
by hUi or hLi respectively. The electrical parameters of each ith
layer are denoted by ei and pi, representing the permitivity and
permeability, respectively. The dielectric materials are assumed to be
isotropic, so both “i and ei are scalars, although pi is not
necessarily equal to the free space value. The dielectric constant,
€ is considered initially to be pure real (lossless case), but it
could be generalized to be complex (lossy case). The microstrip is
surrounded on all four sides by perfect electric conductors (PEC’s), as

in a shielded configuration. If the particular microstrip structure is

14



hm sm' ’u’m
] 1
hua Cuar My
~J 5 ~J
~ E -
UM SU'II’ I'LUI.I wl |
: e———
1 ) i :
LN v My
Ay : s
~ i
hLz ex.z' H’Lz
| "
€, K : :
L1 L1 L1 :
XxX=—8a Z x=xl X=a

Fig. 2.2. Geometry for general multilayer, multiconductor

microstrip structure.
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to have no side walls, then a — o, while if it has no cover sheet or
no ground plane, then hUl or hLl —> ®, respectively.

Because the SDA is formulated for a unit impulse current source at
an arbitrary x location, any arrangement of conductors that are uniform
in the z direction may be considered through superposition. In this
report, the position of the ith signal conductor is determined, as in
Figure 2.2, by the position of the center, xi, and the width, wi. In
addition, each of the center conductors is assumed to be of zero
thickness so that the formulation of the problem deoesn’t become

excessively complex. Although there may be any finite number of these

center conductors on the interface, for clarity, only one is shown.

2.2 The Fourier Transform

+jwt
Throughout the paper an e 4

time convention is used, and the
, th . 4 : : :
complex wave number in the i medium and/or direction is designated by

¥., with a real part «, and an imaginary part B, . The two-dimensional
1 h § 2

Fourier transform pair used with the SDA is defined as:

?{g(XJYI'Z)} = g(erYrBz)

o o« j(ﬁxx+ﬁéz)
= I—m J—w g(x,y,z) e dx dz (2,19
=1 [ne _
F {G(Bx.y,Bz)} = gl(x,y,z)
o . o -3 (B x1+B z)
i ~ X z
= 2 J—m I-m G{Bx'y'Bz) = de de
(2m)

(2.2}

where Bx and Bz are the wave numbers in the x and z directions. If the

structure under consideration is finite in the x direction, i.e. a # o,

16



17

then the wave numbers in the x direction are discrete instead of

continucus, and a slightly different transform pair is used;
?{g(x,y. Z)} & 3(an,nyz)

) a (B _x+B z)
= I_m J:a g(x,v,z) e 1 z dx dz {2539

g(x,v,z)

1 o © -szz -janx
b Zm{f_m G(B, v/B,)e drsz} e A8,

=1 s
F {G (anrYr Bz)}

(21!)2 n=-
(2.4)
where
_ (2n-L)m
Ben = "2a Sl
AB = m/a (2.6)

xn

This transform is equivalent to using a Fourier series expansion in the
x direction instead of a Fourier transform. All Fourier transform
quantities are denoted with a ~ superscript while vectors are
underlined.

This definition of the Fourier transform is not the same as the
one that is normally found in the literature since the exponent of the
exponential in (2.1) is positive instead of negative. It is, however,
equally valid and allows the transform of the partial derivative with

-3B 2
respect to z to be equivalent to assuming an e variation, as is

conventionally used; i.e.,

-iB =z ~3B 7
g{a f(z)} - -3 BB 3 {e z } - -3B e Z 2.7

z 7 8z
While this new definition changes some of properties of the Fourier
transform, as well as some of the transform pairs, there is a simple

relation between the two definitions. If the transform of f(z) using



the more common definition is given by ?(Bz), then the transform using

(2.1) is given by ?(—Bz).

2.3 The Spectral-Domain Approach

The Spectral-Domain Approach (SDA) is preferred over other full
wave solutions for planar circuits, especially spatial domain methods,
because of its simple formulation, high versatility, low memory
requirements, short computation time, and accurate results. The
derivation of the SDA is simpler in many ways than spatial techniques.
For example, for the geometry of Figure 2.2, the partial derivatives
with respect to x and z in spatial coordinates become multiplications
in the spectral domain. The Green’s function approach used in the SDA
makes it applicable to many different types of planar circuits
including the following:

a. An unlimited number of signal conductors confined to one plane.

b. An unlimited number of dielectric layers above and below the

interface containing the conductors.

c. Top (cover) and/or bottom (ground plane) conductor (either

present or absent).

d. Conductor side walls (either present or absent).

Unlike spatial domain formulations, large matrices are not
required to obtain accurate results with the SDA. 1In addition, large
structures, such as open microstrips, are handled as easily as smaller
ones, without the huge increase in memory requirements as there is with
spatial methods. Because the matrices used by the SDA are much smaller

and fewer numerical integrations are needed, computer run time is much

18
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less than that of other formulations. Since the SDA is a full wave
formulation, the results are very accurate, and it has even been used

to produce a reference standard [50].

2.3.1 The Wave Equations in the Spectral Domain

The SDA begins by transforming the fields and boundary conditions
from the spatial domain to the spectral domain in order to simplify the
derivation process. Using a transform to solve the second order
differential equation is equivalent to using an eigenfunction
expansion, but the formulation is more straight forward. As indicated
previously in Section 2.2, the Fourier transform changes both the z and
x partial derivatives into multiplications, simplifying the electric
and magnetic wave equations as well as the vector potential approach.
Transforming, as in (2.1), the time-harmonic electric and magnetic wave

equations for lossless media with only a current source present gives;

- =

2
VZE + BZE = -jwpd «—— i + Bz E = -jwu&l (2.8)
[ 9Y J
2 2 -62 1 a
VH+ BH=-YJ ¢«— |—+B |H=-4d |1BJ + — J
= = By X =y y —z
sdiled ~pF|l+d|lmy + 27 (2.9)
y:J z—x Z—Z z| 7 Xy y —x% ’

Since the microstrip conductor is assumed to be infinitely thin, there
is no current density in the y direction and the partial derivatives
with respect to y of the x and z current densities are zero. Using
this, the transform of the magnetic wave equation can be written more

concisely as:
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2
a 2|~ . A ~ ~
_8y2 + 13y H=73 ay[ﬁzgx - Bzgz] (2.10)

The transformed wave equations are second order partial
differential equations of only a single variable, y, and so they give
no information or constraint on the x or z variations. The x and z
dependence of the problem is now contained implicitly in the transforms
of either the current densities or the electric fields through the
functional dependence on Bx and Bz. To illustrate the use of the SDA,
a simple structure, the shielded microstrip is considered. First, the

derivation for TM' mode is done, and the TEY follows.

2.3.2 1™ Modes for the Shielded Microstrip
The geometry of the shielded microstrip, shown in Figure 2.3, is

the equivalent to the geometry found in Figure 2.2 with n =M = 1,

h =h, h =h, x =0, and w = w. Since the structure has walls
ul 2 L1 1 i i

at a finite distance, the second Fourier transform is used as stated in
(2.3) through (2.6). This derivation can also be generalized to the
open microstrip structure by letting a — ® and h2 — w© and using the

first Fourier transform pair of (2.1) and (2.2). Transforming the

fields and the vector potential, A, into the spectral domain gives:

A=34A (x,y,2) ——— A=4Z% (B,v.B) (2.11)
o vy Y — Yy Bx Y IBz

2 B
ETM - _j_l,,_g__ A PR ETM - i g— 2 (2.12a)

X wpe dx8y 'y x wpe 8y y

2 2

TR L v N 3 B oyl j—+{32 A (2.12b)
wue 2 Yy y wpe 2 y
dy a

2 B

J 18 g __zd = (2.12¢)

z hjwpe 8zdy Ay z wpe dy y



Fig. 2.3. Geometry for two layer, shielded microstrip
structure.

¢
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B

1 o~ o~
g™ - _1 8., e B s R (2.12d)
x udz 'y X uy
" =0 —— HM"=0 (2.12e)

B

gt .t B, ey B = == (2.12f)
z uéx y z U W

A h
The scalar potential Ay'(Bx'y'Bz} for the i° layer, ¢+ = 1 or 2,
1
is chosen as follows:
REGION 1: (0 =y = hl)
Ayl = B (B./B) cosh(ayly) {2.13)
REGION 2: (hl =y S h2)

Kyz - ?52 (B,+B,) cosh{ocy2 (h+h -y)] (2.14)

Ei(Bx'Bz) and gz(Bx’Bz) are unknown functions of the transform
variables, which are to be determined from the boundary conditions.
They are abbreviated as gi and gz throughout. 3&1 and Kyz are chosen
based on; 1) the tangential E fields vanishing at y = 0 (at the ground
plane) and 2) the tangential E fields vanishing at y = h1+h2. The
hyperbolic cosine is chosen since the structure should have standing
waves in the y direction.

If the ™ mode is an independent solution of the boundary value
problem, then either the x or the z directed fields can be used to
enforce the boundary conditions. On the other hand, if using the x and

Y mode is not a

z directed fields gives different answers, then the TM
solution and the problem must be solved as a superposition of two
orthogonal modes. Using the scalar potentials in (2.13) and (2.14)

with the equations for the fields in (2.12a-f), the electric and

magnetic fields in each region are calculated.



REGION 1:
B a
~ = -N X y]_ 2
Exl B1 “plcl 51nh(ayly) (2.15a)
~ ~ Bz“yl 4
E = -B sinh(a _y) (2.15b)
zl 1 wulel yl
~r ~ BZ
Hx1 = Bl EI cosh(ayly) (2 156)
~ Bx
H21 = -=j B1 H: cosh(ayly) (2. 15d)
where
2 2 2 2 2
= + — " .
Bl Bx Bz ayl i “181 . AL
REGION 2:
o~ o~ BX y2
E = B sinh{e (h_ +h -y)] (2.17a)
X2 2 wpE, y2 1 2
B «
~ ~ z y2 5
E =B sinh[a _(h_ +h_-y)] (2.17b)
z2 2 wh,E, w2
~ BZ
Hx2 =3 B2 E; cosh[ayz(h1+h2-y)] (2.17c)
~ ~ Bx
= =9 e -+ - ’
- j B2 » cosh[oc,yz(h1 h2 v) ] (2.174d)
where

2 2

2 2 2
82 = ,Bx + Bz - “yz = w u282 (2.18)

Now that the expression for the fields have been specified, the

boundary conditions can be applied to eliminate El and gz'

H Exl y=h - Exz y=h
1 1
B « B «
B XY sinh(e h) =B ¥ sinh(a h) (2.19)
1 we_ € vl 1 2 WU_E y2 2
s e 2 2
o 28r1pr1 sinh (« 2hﬂ
B =8 X . : (2.20)
1 2 o & | sinh (e h )
y1 r2 r2 vl 1

The z directed electric fields are now considered.

23



gy H | . =8 |
zl y—h1 z2 y~h1
B « B a
1 S
B Z¥l sinh(a h) =8 —2Y¥2 sinh(a h) (2.21)
1 W€ vyl 2 wu_€ y2 2
11 2 2
o € M sinh (o 2h2)
B =-8 X : b4 (2.22)
1 2 00 £ M sinh(a h )
y1 r2hre vyl 1

This gives the same result as the x fields, as desired.
Next, the discontinuity of the H fields at the center conductor

interface due to the presence of a current source is enforced.

+ Hxl y=h1 - sz y=h1 Yz
B B
38 -Z cosh(e h) - 3B —Zcosh(w h) =" (2.23)
1 p, yi 1 2 1, ¥2 2 z
Substituting in for gl using (2.20)
BzOc 28r1 Bz M
-3 ﬁ coth( h )sinh(e h) -j B, -= cosh(a h) =
M. Epy y Y K, y
(2.24)
€ coth(x h) € coth(a h)) €
~ 2 ~
A ¥Lr g ¥ E )y 2 5™esch(x _h)  (2.25)
2 o o o« B z y2 2
g y2 y2'z
Let
- crlcoth(a lhl)
¥ = 4 (2.26a)
s1 o
yv1
- crzcoth(a 2h2)
¥ 2 (2.26b)
52 o
y2
This simplifies (2.25) to
€My wrm ™ ] 7*
B =3 J csch(a h ) |Y + Y (2.27)
2 “ysz 2 y2 2 s1 52

Next, the z directed magnetic fields are checked to see if they

give the same answer,

a) ® =¥ = o
zl yﬂh1 z2 y=h1 b4
, o~ BX , o~ BX ~'TM
-3 B — cosh(aa h ) + J B. — cosh(ex h ) = =g (2.28)
1 “1 yl 1 2 pz yZ 2 X
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Using (2.20) for ﬁl as before,

~ meyzcrl s Bx ~TM

-3 B2 E_E__E_— coth(ay1h1)sinh(ayzh2) -3 B2 aﬂ cosh(ayzhz) = -JX
2yl 2 2

(2.29)

Simplifying this equation using (2.26a) and (2.26b) leads to

erzuz ™ T™ T™ .
] J csch(ae h) [Y + Y ]
y2 2

B _ (2.30)
2 ayzﬁx X s1 s2

In order for the ™' mode to be an independent solution in the
spectral domain, (2.27) should be equivalent to (2.30). This occurs if

the x and z directed modal currents are related as follows;

5 i (2.31)

To show that this relation is indeed true, the magnetic wave
equation with only an electric current source present, as in (2.10) is

used:

2
3 2 ~ " ~s ~s
;2- + By Hy = 5 [BZJ Bsz] (2. 32)

Since the TM' mode has no Hy, the left side of (2.32) is zero and so

~TM ~TM
Bzax = BXJz (2.33)

Therefore the ™' mode satisfies all the boundary conditions in

the spectral domain. To complete the solution, the tangential fields
at the center conductor interface are required. Replacing Ez in

(2.17a) and (2.17b) with (2.27), and evaluating them at y = hl leads to

B
~TM .1 Px oM ATM
EXZ = 'J E B_ Z JZ (2.34)
0 z
i (2.35)
z2 we z



~TM
where 2" is the modal input impedance, defined as

-1
- +
Z [YSI YSZ] (2.36)

2.3.3 TEY Modes for the Shielded Microstrip

Having solved the ™ mode, the TEY mode is considered.
F = i ~ - 2 ~ )
ayFy(x,y,z) — F ayFy(Bx'y'Bz) (2.37)
B
ETE - l .._.Q F — ETE = -3 __2F (2.38a)
p 4 € 0z 'y X > Y
E " =0 «—s EFf =0 (2.38b)
Y Yy
TE 1 48 ~TE BX o~
E i e YR B oy E =j — F {Z.38c)
€ 0x 'y € ¥
2 B
TE . ad ~TE X 8 ~
H = —jw——e m v —> HX = w—? E Fy (2.38d)
2 4
4T - Yo _E%+32 F — s BTE -— —jifﬁ F (2.38e)
¥ H Ay Y Y (=8 Ay ¥
2 B
TE , 1 3 ~TE z d «~
S " ammsay T M T Gmaly S

The scalar potential ?;I(Bx,y,ﬁz) for the e layer, i = 1 or 2,
1
is chosen as follows:

REGION 1: (0 =y = hl)

Fy1 = AI(BX,BZ) 51nh(ayly) (2.39)

REGION 2: (h, Sy =h,)
B ™ A (B /B) 51nh[ay2(h2+h1—y)] (2.40)

Al(BX,ﬁz) and Az(Bx'Bz) are unknown functions of the transform

variables, which are to be determined from the boundary conditions.
They are abbreviated as Kl and KZ throughout. ?yl and %&2 are chosen

based on; 1) the tangential E fields vanishing at y = 0 (at the ground
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plane) and 2) the tangential E fields vanishing at y = h1+h2. The
hyperbolic sine is chosen since the structure should have standing
waves in the y direction.

As with the ™Y mode, if the TEY mode is an independent solution
of the boundary value problem, then either the x or the z directed
fields can be used to enforce the boundary conditions. Likewise, if

Y mode isn’t an independent solution

they are not equivalent then the TE
and the problem needs to be solved with a superposition of two
orthogonal modes. Using the scalar potentials in (2.39) and (2.40)

with the equations for the fields in (2.38a-f), the electric and

magnetic fields in each region are calculated.

REGION 1:
~ ~ Bz
Exl = =3 Al E: 51nh(ayly) (2.41a)
~ ~r Bx
= j — si .41
E_. 3 Al ) 31nh(ay1y) (2 b)
B «
= -2 o T cosh (o _y) (2.41c)
x1 1 wH, € y1
B «
= X Z¥ cosh(a y) (2.414d)
z1 1 wh_€ y1
% ER §
where
2 7 2 2 2
B1 = Bx + Bz - ayl = wpe (2.41)
REGION 2:
~ ~ Bz
= - — i + - g
Exz ! A2 82 31nh[ay2(h1 h2 y)1 (2.42a)
~ Bx
= 9 — 1 + - "
. ] A2 82 31nh[¢x,y2(h1 h2 y) 1] (2.42b)
Bxa 2
H =2 Y2 coshle _(h +h_-y) ) (2.42¢)
X2 2 wp,E, yz' a2
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~ Bza 2
¥ =X Y¢ cosh[a _(h_+h_-y)] (2.424d)
z2 2 wpzez y2©- 1 2
where
2 2 2 2 2
= + - = .
82 Bx Bz “yz w p282 (2.42)

Now that the fields have been determined, the boundary conditions

can be applied to eliminate Kl and Kz'

~ ~

1) _ = _
x1 y—h1 X2y h1
-j A, — sinh(x _h ) = =jJ A_. — sinh(a _h) (2.43)
1 cl vl 1 2 £, y2 2

€r1 sinh (o 2hz)
EF = 0 e (2.44)

1 2 € sinh{a h )

r2 i 12 o

The z directed electric fields are now considered.

2) E =E
) zl y=h1 22 |y=h
-j A, — sinh{(a¢ h ) = -j A_ — sinh(a¢ _h ) {2 .45)
1 Cl ¥yl 1 2 82 y2 2
€ sinh(ayzhzj
A1 - A2 € sinh(a _h)) (2. 46)
r2 vl L

which is the same result as using the x fields, as required.
Next, the discontinuity of the H fields at the center conductor

interface due to the presence of a current source is enforced.

~s ~ ~TE
3 Hxl y=h h Hx2 y=h - Jz
1 1
B B o
KO EXL coshie h) - X ¥ soshite by = T (2.47)
1 wulcl vyl 1 2 wu282 y2 2 Zz

Substituting in for gl using (2.44) leads to

Bxa 1 Bxa 2 TE
-& Y. coth(e _h_ )sinh(a h) - X Y2 cosh(a _h) =3
2 WU E yl1 y2 2 2 wu_€ y2 2 z
12 272
(2.48)
o coth(a h) o coth(a_ h ) We € -
Kz y1 B ¢ + y2 y2 2 = = ; g 3JEbsch(a ;1£
url pr2 X " ¥

(2.49)
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Let
o coth(a h))
N;:: ol o (2.50a)
Heq
o coth{(a h )
N;i - Y2 2 2 (2.50b)
My
This simplifies (2.49) to
YHoE) e TE re]
A = - J " esch(a h) |¥ + ¥ (2.51)
2 Bx z y2 2 s1 82

Next, the z directed magnetic fields are checked to see if they

give the same answer.

~ ~ ~TE
4 Hzl y=h sz y=h - Jx
1 1
Bxa 1 Bxa 2 TE
-X Y cosh(e _h) - A Y° cosh(e _h) = - ¥ (2.52)
1 wu € vi1 2 wu € y2 2 X
A R 272
Using (2.44) for Kl as before,
Bxa 1 Bxa 2 TE
= Y> coth(e h_ )sinh(e _h) - A Y2 cosh(a _h ) = -F
2 WU _E yi'l y2 2 2 WU _€ y2 2 X
172 2
(2.53)
Simplifying this equation using (2.50a) and (2.50b) leads to
o WHOoE) re 15 orE]
A= J csch(a h ) |Y + Y (2.54)
2 Bz X y2 2 s1 52

In order for the TEY mode to be an independent solution in the
spectral domain, (2.51) should be equivalent to (2.54). This occurs if
the x and z directed modal currents are related as follows;

~T

E ~TE
B, =-BJI, (2.55)

To show that this relation is indeed true, the continuity equation
is used with a time varying volume charge density, g(x,z;t), equal to
jwt fooa
pv(x,z)ej , giving

__ 29 jwt
Veg = T [pv(x,z)e ] (2.56)



Computing the time derivative and suppressing the time dependence
reduces (2.56) to

a a a §

= + — + — = - ;

= Jx o Jy 37 Jz Jjw pv(x,z) {(2.:57)

Fourier transforming the (2.57) twice, with respect to x and z as in

(2.1) and letting 3} = 0 (due to zero strip thickness) leads to

~TE ~TE ~
- 3 - 3 = - 3 2,
J'Bxe JBsz W Py (el
For a TEY field, the normal E field (Ey) is zero everywhere. The
boundary condition of i o €E = P, then implies that pv(x,z) =0
everywhere, and so SV(BX,BZ) = 0 also. Therefore (2.58) reduces to
~TE ~TE
= - 2
Bsz 3xe (2.59)

Thus the TEY mode independently satisfies all the boundary
conditions in the spectral domain. To complete the solution, the
tangential fields at the center conductor interface are required.
Replacing 32 in (2.42a) and (2.42b) with (2.51), and evaluating them at

y = h1 leads to

B
~TE ; Z ~TE ~TE
Exz =Jen 2 Jz (2.60)
X
~TE ~TE ~TE
= — ] . 1
- J ey Zz g (2.61)

where Z'° is the TEY modal input impedance, defined as:
TE TE re]
5 o [Y + ¥ ] (2.62)
s1 s52

The tangential electric fields at the center conductor interface
have been determined for each mode in terms of the modal current
densities. However, since solution of the microstrip problem requires

the total fields at the interface, the modal fields of (2.34), (2.35),
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(2.60) and (2.61) are added together to form the x and z directed

fields giving

B B
o~ ~TM ~TE , 1 X ~TM|~TM Z ~TE |~TE
= + = Tt —
E‘.x2 Exz Exz 3 {[wc B Z ]Jz + [wuﬂ i Z ]Jz } (2.63a)
0 z X
~ ~TM ~TE ; 1 ~TM|~TM ~TE | ~TE
= + = - - "
Es™ B Ez2 j {[wco Z ]Jz [wuo Z ]Jz } (2.63b)

2.3.3 Current Density Relations
To combine the TEy and 'I‘My modal solutions there needs to be an

~TE ~TM ~TM

; g o ~TE
equation relating the modal current densities JZ ; Jx - Jz , and Jx ’

to the total current densities 3x and ﬁz. Each modal solution, TEy or

TMY, contains only one independent current component, the other is
related to it by either (2.33) or (2.59). Therefore the combined modal
solution for the microstrip must contain two independent current
distributions. Since the total fields are a combination of the modal
fields, the total current densities can be written as the sum of the

modal current densities; that is

gl S g (2.64)
z z z
S Sl (2.65)
X X X

Substituting (2.33) and (2.59) into (2.65) leads to

B B
3 =3 Bf - " B_z (2.66)
z X
Multiplying (2.64) by BZ/BX reduces to
B B
3’25—1=3:”8—Z+EZEB—Z (2.67)
X x X
Adding (2.67) to (2.66) leads to
B B B
3‘:”6—7‘+B—"=3“ B—z+3’ (2.68)
X A = X x
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Multiplying both sides of (2.68) by Bxsz/(si + Bi" the current density

~TM 2
JZ can be written as

B (F B +J B.)
JTH - z z Z X X (2.69)

2. .3
(B *B,)

y

To get the relationship for the TE® current density, multiply

(2.66) by -BZ/Bx reduces to
B B

-¥ 2= M R LE (2.70)

X X

Z

Adding (2.70) to (2.64) leads to

B

E (2.71)

N
v
%

Multiplying both sides of (2.71) by Bi/(Bi + Bz), the current density

~TE 3
Jz can be written as

¥TE _ Bx(Jsz_Jsz)

Zz 2 2
(BX+BZ)

(2.72)

2,3.5 Green’s Functions

Having obtained relationships between the modal and total current
densities, the total electric fields at the interface can be expressed
in terms of the total current densities. Using (2.72) and (2.69) to
express the modal currents in terms of the total currents in (2.63a)
and (2.63b), the total fields at the center conductor interface can be

written as
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e . 2
; B.B B
_ J X z_TM TE X M 2 TH
Ex2 " Jz = Z 4+ wMOBszZ +Jx GE"Z wpoﬁzz (2.73a)
B.*B, | “%o !
2 =
j rﬁz T™ 2_TE Bxﬁz T™ TE
E = J |—Z2 - wu B2 |+J |—2 + wp B B 2 (2.73b)
z2 2 2 Z|wE 0 x X| we 0z X
B +8 0 0
z B g
E =-2[J6 +36G ] (2.74a)
=2 weo Z ZZ X XZ
E_=-2[d6 +36 ] (2.74b)
X2 wcu Z ZX X XX
where
2 TM _2_2 TE
B,z -B.B,Z
Gzz = = (2.75a)
%
Bx Bz
2_TM 2.2 TE
B2 -B.BZ
B ™ 2 2 (2.75b)
+
BX lBZ
ZTM+B§ZTE
= = 2.7
GXZ GZK BXBZ 82+|82 ( SC)
X 4

Equations (2.74a) and (2.74b), for a given frequency and
structural parameters, have two unknown variables; Bx and BZ, and four
unknown functions; JZ(BX), JX(BX). Ezz(Bx,Bz). and EXZ{BX'BZ)-
Furthermore, the magnetic and electric wave equations, after being
transformed twice, give no information or constraints on the form of
the four functions, as it does in the spatial domain. It is
advantageous, then to use a method which can eliminate the four

functions and one variable.

2.3.6 Galerkin’s Method
Galerkin’s method is a method of moments technique that uses the

same expansion and testing functions to solve an integral equation. To



apply this method, the current densities are expanded into complete

sets of basis functions
00
- Tajd
z E angn
n=1
[+3]
J = B.J
X §1 m xm

(2.76a)

(2.76b)

where a, and bm are unknown constants that specify the amplitudes of

each current expansion function.

The x and z current densities in the electric fields of

(2.74a)

and (2.74b) are now replaced by the series expansions for the currents

of (2.76a) and (2.76b).

densities with known basis functions of unknown amplitude,

in,
00 «©
~ ~n ~
E = YaldJd_ G Y b G
z2 n zn zz m Xm zZX
n=1 m=1
o [o4]
~ N
E_ = YadJd G _+ YbJd G
X2 n zn zxX m Xm XX
n=1 m=1

This replaces the unknown x and z current

resulting

(2.77a)

(2.77b)

Now (2.77a) is multiplied by the complex conjugate of (2.76a) and

(2.77b) is multiplied by the complex conjugate of (2.76b)
YaJd E _= Yald YaJd G _+ YbJ G
n zn z2 n zn n zn zz m xm zX
n=1 n=1 n=1 m=1 i
YybJd E_= YbJd YaJd G Y bJd G
m Xm X2 m Xm n zn zx m Xm XX
m=1 m=1 n=1 m=1 ]

which gives

(2.78a)

(2.78b)

Integrating both sides of (2.78a) and (2.78b) from minus infinity to

plus infinity with respect to Bx gives

© 0 =
Yy a I E

n zn z2
n=1 |-
© .
L b I E

m Xm x2
m=1 | " -

g

n

an
1

o0

Lb

m=1

n

(2.79a)

(2.79b)
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where for open configuration (a = w)

o N .

Knn - d i Jzn(Bx)Jzn(Bx)Gzz(Bx'Bz) de (2.80a)
o m N N

“tn ~ - Lo B Do (B IE, . W) AR (2.80b)
p® - -

Knm - ¥ i Jxm(Bx)Jzn(Bx)sz(Bx’Bz) dﬁx (2.80c¢)
s N N

Kmm B J Jxm(Bx)ka(Bx)Gxx(ax'Bz) de (2.80d)

For shielded configurations (a # w) the integrations are replaced by
summations since Bx is a discrete instead of a continuous variable and
de is replaced by ABx as in (2.5) and (2.6). Using these changes in

the above four equations gives

w0 i N .

B~ " E J BT (B )G (B ..B) OB, 5 i)
® N N

“mun = i Eum JZH(BXi)Jxm(BXi)sz(ﬁxi'Bz) ABX (2.81b)
[+ ] ik = N

R = . E_w J BT, (B IC, (B ..B,) DB (2. B1¢)
[} 3 N N

K = § Jxmthi)Jxm(Bxi)Gxx(Bxi,Bz) ABX (2.81d)

rnrn ]

1 -0

In practice, the integrations in (2.80) will be done numerically,
so (2.81) with finite limits for the summations, are more
representative of the actual equations that need to be computed.

The left hand sides of (2.7%9a) and (2.79b) can be shown to be zero
through the application of Parseval’s theorem, which states [51]:

Given two functions f£(t) and g(t) that are Fourier transformable

with transforms represented by
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g(t) ¢«— G(w) and £it) e— Fw) (2.82a)
then
00 1 NN o
I g(t)f(t) dt = ﬁ.[ G(wF (w) dw (2.82b)
-00 -0

%*
where denotes the complex conjugate. Thus the integration of the
left hand side of (2.7%a) is

o0 & [14]

I Jzn (.BXJEZ2 (ﬁx,ﬁz) dﬁx = ZHI Jzn (x)Ez2 (x,.@z)dx (2., 83)

-0 =00

Note that the current density exists only on the strip and the
tangential electric fields are zero there because it is a perfect
electric conductor. The tangential electric fields, on the other hand,
are non-zero only where there is not a conductor, and therefore where
there is no current density. Thus the product of the current density
and electric field is always zero since neither is non-zero where the
other exists. Therefore, the integrand is zero for all x and so the
integration in the spatial domain is also zero. Since the integration
in the spatial domain is zero, through Parseval’s theorem, the
integration in the spectral domain is also zero. 1In a similar fashion,
the left side of (2.79b) can also be shown to be zero. Replacing the

infinite limits of the summations with finite ones, (2.79a) and (2.79b)

become
N [ n M
¥ a_ 58 a K -+ ¥ bk [=0 (2.84a)
n=1 _n=1 m=1
M [ N M
¥ b ¥ ak + b K |=0 (2.84b)
m=1 _n=1 m=1

where N and M are the total number of current densities used in the

expansion.
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These equations can be solved numerically for Bz as a function of
frequency and/or structural parameters by using a nonlinear equation
solver to find the zero of the determinant of the resulting matrix. To
obtain an exact solution, the number of basis functions used must be
infinite. However, if the basis functions are chosen properly, so that
they closely model the actual current distributions, then few terms are
necessary to obtain very good results. For frequencies well into the
dispersive region of the structure, only a two by two matrix (i.e. M=1,

N=1) 1is necessary to get very good results.

2.3.7 Slot Lines and Coplanar Waveguides

For slot line and CPW type structures, the electric fields exist
over a smaller portion of the center conductor interface than the
current densities. Therefore it is usually more convenient to specify
the electric fields in the spaces as opposed to the currents on the
conductors. To solve these types of problems, it is advantageous to
reformulate (2.74a) and (2.74b) so that the currents are expressed in
terms of the electric fields.

The analysis begins by simplifying (2.74a-b)for the fields on the
conductor interface. Both sides of these equations are multiplied by

-3 2 .2 p
—2-(BX+BZJ and they can then be written as

Wi
0
- ~ 2. 2 ~ 2 _-2~TM _2~TE| o~ -2~TM ~TE
jEzz(Bxﬁez) = JZ[BZBO Z B2 ]+Jx[3x32{30 -y }] (2.85a)
0
-J o 2,52 20vTM ~TE ~ 2 -26TM_2edTE
E1-:}{2(Bx+.ﬁ'z) =J [Bsz{B 7z +Z }]+JX[BX 3 B ] (2.85b)



These equations are now in the form of a matrix equation, i.e.

-4 2 -9 Ezz 3 B Jx
JJ_‘Bx+3z) = (2.86)

“0 E b ¢ J

x2 z

where
2.-2 TM 2 _9E

a = BzBo Z _sz (2.87a)
b = BXBZ{BBZZTM+ZTE} (2.87b)
- B, 5“2 e zzTE (2.87¢)

The matrix equation in (2.86) can be solved for Jx and J, by

multiplying both sides by the inverse of the square matrix; i.e.,

Jx -7 2. .2 . _1 Ez3 =7 2. ...2 @ & Eza
= 52-(8x+82) = Eg_(Bx+Bz) et
J Mo b e E Ho E g E
z x3 X3
where
e = cf(ca=b’) (2.89a)
f = —b/(ca—bz) (2.89b)
g = a/(ca_b2) (2.89c)

Begin by finding the denominator of the matrix elements
2 -2 _TM 2_TE 2_-2_TM 2 _TE
(ca-b) = [B B z - sz ] [BXBO p:A - B Z ]

2
2.2 -2_TM TE
—[BXBZ {B 2™ + 2 }] (2.90)

2
2.2 =4 TM 4 -2 _TM_TE 4 . ~2_TM_TM

2
(ca-b’) = B2B.B ‘2" -p B 2" 2 g B 2"z
2.2 TE2 2.2 -2 TM TE 2.2 TE2
o282 a7 2" 28675 82622 (2.91)
(ca-b’) = -z2""z " [B +ZB B B ] (2.94)
2 ™ TE 2 2 %
(ca-b’) = -2""2""g [Bx+Bz] (2.95)



Let

™
Y

TE
Y

Using these substitutions with the equation for the denominator

(2.95),

e

H
Il

I

g

Substituting back into the matrix and writing out the equations

where

zZ

XX

Equations (2.98a)

-3

=1/

1/ZTE

c/(ca—bz)
-b/ (ca-b>)

a/(ca-bz)

Wit

=]

2.2 TM

B2B2Y

0

E H
z2 zz

2.2 T™

5%

™
BXBZ[Y

2 2 TM
5%

It

+EX2HXZ]

weﬂ [ E22H2x+Ex2Hxx]

2,TE

B’y

z

2 3
BB,

2,2 ™

B B Y

ol ]

2.,TE

B'Y

X

2 =2
BX+3Z

-H_ = BB

X z .2 2
+
Bx Bz

zX

2., TM TE
B Y +Y

and

2.,TE
- By ]

2.t [
+
By ]

~ BinE]

2
X

B_+B

~N

2
BX+BZ

2 2
BX+BZ

.

the elements of the inverted matrix are;

-2

(2.

(2

(2.

(2.

(2.

(2

(2.

(2.

(2.98b) can then be solved in the same

96a)

.96b)

.97a)

97b)

97c)

.98a)

98b)

99%a)

99b)

99¢)

manner as (2.76a) and (2.76b) for Bz by expanding the electric fields

instead of the currents.

field are chosen to be the same as the current expansion functions,

except that the J
zZn

functions are used for the Ezn

The expansion functions for the electric

functions are used for Exm expansions and the Jxm

expansions.
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2.3.8 Green’s Function for Multilayer Structures

With the increasing emphasis on MMIC technology, the need to
compute microstrip parameters for multilayer structures has become more
important. The introduction of additional substrate layers, even
relatively thin ones, has a strong effect on the effective dielectric
constant of the structure [52]. In general, the addition of
superstrates does not significantly affect the parameters of planar
circuits. However, in certain cases, especially when the circuit is
shielded, these layers also can have a large impact on the propagation
characteristics of the structure. Although the effect of multiple
layers is very important, almost all of the approximate formulations
have been done for a single dielectric substrate, and they cannot be
modified to handle more general cases. However, because of their exact
formulation, most full wave solutions can treat the multilayer problem.

One drawback with using full wave solutions, such as the SDA, to
solve multilayer problems is that they normally require a different
computer program for each structure that would potentially be studied.
In the case of the SDA, a new Green’s function must be derived for each
possible configuration by solving the appropriate boundary value
problem. As the number of layers increases, the number of unknown
constants and equations in the boundary value problem quadruples. Thus
to obtain the Green'’s function of a structure with six dielectric
layers using a combination of TEX, TMX, TEZ, or ™" modes would require
simultaneously solving twenty four equations for twenty four unknowns.

'

1f TEY and TM' modes are used, the problem simplifies slightly to two



separate sets of twelve equations and twelve unknowns. Thus the
development of an easily computed, generalized Green'’s function for
planar printed circuit lines will greatly simplify both the theoretical
development as well as the computational process.

In this section, a general Green’s function is presented that is
easily computed through a recursive formulation. This Green’s function
is applicable to structures with any number of layers above or below
the center conductor interface. Since the information about the y
variations in the structure are contained in the modal input
impedances, they are the only part of the Green’s function that must be

recalculated for multi-layer structures. The input impedance for

Y Y

or TM" mode can be thought of as a parallel combination

either the TE

of the admittances seen above and below the center conductor interface,

i 1
y ) _ - (2.100)
~ ~S
¥4y
LN UM
where i is either TE or ™, L and U indicate the lower and upper layers

respectively, and N and M are the total number of planar layers below

and above the interface, as in Fig. 2.2. The admittances ?:%: are
i}

determined using a recursive formulation for either the upper or lower

layers, beginning with j = L1 or Ul through j = LN or uM, using

~TM ~TM 2 2

~TM _ s(3) (3-1) Y(j)/ur(j) (2.101)

) ~TM ~TM ’

¥
s(3) =1
~TE ~TE 2 2

~TE S 1) r(')/a (3)
o ] A ¥ (2.102)

(3) ~TE ~TE

5(3) (3=



o coth|a h .]
(3)

?;Tj) _ _¥Q) y (3) (2.103)
pr(j)
o e % B
L S A (2.104)
y (3)
?:; can be thought of as the input admittance seen looking outward
through the jullayer (away from the conductor interface) and ?;i; is

the self admittance of the layer for the particular mode configuration.
For j = ul or 11, then the (j-1) layer, u0 or L0, is a perfect

electric conductor (i.e., a ground plane or cover sheet), and

(i)

(k) 0 — ®, for k = U or L, since a perfect conductor has zero

~ (1)

resistance. Taking the limit of either (2.101) or (2.102b) as Y(k)o
goes to infinity, then Q(“ o P4 "
(k)1 s(k)1
If the (Mlth layer is dielectric of infinite height (i.e.,a

structure with no ground plane or cover sheet), then hm1 — ® and

therefore COth(ay(th(Hl) — 1, respectively. The conditions for
Y:So and ?:31 are the same as above, as though there is a conductor

at an infinite distance. This is a valid assumption since the outward
radiation condition specifies that E — 0 as y — *w. This particular

configuration, no ground plane and/or cover sheet, results in

~TE  _ «TE

- = 2.105

(k)1 s (k)1 aY(HI/“r(Hl ( )
~TM ~TM

(k)1 sl er(M1/ay(m1 (2.106)

Note that these equations are the same for layers both above and
below the conductor interface because the unigqueness theorem states
that solution of the boundary value problem is invariant to the method
of solution (if done correctly). Certainly it is not possible for the

structure to ’'know’ which layers are 'above’ or ‘below’. This symmetry
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in the equations is valid only for strips of vanishingly small
thickness and becomes invalid when the strip thickness approaches the
height of the dielectric layer that contains it.

Thus the Spectral Domain Approach is a simple, fast and efficient
method for determining the propagation constants of planar transmission
lines. Starting by Fourier transforming of all the field quantities,
the derivation of the Green’s function is simplified. teY and ™™
modes are then used because they can independently satisfy the boundary
condition in the spectral domain. The total electric fields at the
interface can then be obtained by relating the modal currents to the
total current densities. After the total electric fields are found,
the total currents are expanded into a complete set of basis functions
so that the problem can be solved using Galerkin’s method. Finally the

equations are solved numerically to obtain the propagation constants of

the structure under consideration.
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CHAPTER 3
TRANSIENT SIGNAL ANALYSIS

While many applications of printed circuit transmission lines
require only single frequency operation, there also is a demand for
circuits that use finite time domain signals. This chapter presents
the formulations necessary to analyze the distortion of transient
signals on isoclated, as well as coupled transmission lines. Since
planar printed circuits are inherently dispersive, i.e. the phase
velocity is a function of frequency, the analysis of transient signal
distortion on these lines begins with a frequency domain approach. 1In
order to consider the coupling between adjacent lines in a rigorous
manner, the even/odd mode formulation is then presented. Finally, this
formulation is used to derive the appropriate equations for the
propagation of finite time domain signals on dispersive and lossy

symmetric coupled transmission lines.

3.1 The Frequency Domain Approach

The analysis of the time dependent response of a transient signal
may be formulated in either the time domain or the frequency domain.
For a non-dispersive transmission line, it is easiest to analyze signal
propagation in the time domain. On the other hand, if the
transmission line is dispersive, then the analysis in the time domain,

while possible [14], is much more difficult and time consuming. The



simplest and most efficient method for examining pulse propagation on
these types of structures is to consider the pulse in the frequency
domain.

The analysis of the system response begins by defining a Fourier
transform pair that relates the time domain response to the fregquency
domain spectrum. Using a time variable t and the corresponding

transform variable w, the Fourier transform pair is defined as

T/2 .
Vi, z) = ?{v(t,z)} = J it 2) & Y av (3.1)
-T/2
© '
vit,z) = 9’_1{\7(&),2)} - 2_111 F(w,2) e dqw (3.2)
-00

where T is the total time over which the pulse exists. Since the
signal exists only over a finite time period, its spectrum V(w,z) is
continuous and exists from -o < w < o.

The time domain response of a linear system to an input signal is

45

equal to the convolution integral of the impulse response of the system

and the input signal. If the input signal is v(t,z) and the impulse

response of the system is h(t,z), then the system response, in time, i
given by
o0
y(t,z) = I h{T;2) ¥({E-Ty2) ar (2.3)
-0

Since the convolution integral of two functions in the time domain is
equivalent to multiplication of their Fourier transforms in the
frequency domain, (3.3) can also be written as

Y(w,2) = H(w V(w2 (3.4)

where ?(w,z), ﬁ(w,z), and V(w,z) are the Fourier transforms of y(t,z),

S

h(t,z), and v(t,z), respectively. To find the system response in time,
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the inverse transform of (3.2) is applied to both sides of (3.4) giving

jwt

[14]
y(t,z) = %J. V(w, z)H(w) e dw (3.5)
-00

The impulse response of a matched transmission line is simply a
phase advance equal to the product of the complex propagation constant

and the distance traveled, i.e.

-y _(w)z -l (w)+iB (w)]z
M, z) =& ° =8 ° 5 (%, 63

where 7z(w) is the complex propagation constant, az(w) is the
attenuation constant, and Bz(w) is the phase constant. Using (3.6) for
ﬁ(w,z) in (3.5), the response on a transmission line at a time t and a

position z, to a signal v (t,z) can be written as

L - Lo, (w)+jBZ(w)]z0 jwt
y(t,zo) = B I Viw,z) e e dw (3.7)
-0
or
® - (wyz Jlwt-B (w)z ]
yit,z) = ﬁj‘ Vw,z) e 2 e =Y 4 (3.8)
-00

The exponential containing az in the integrand causes the degradation
of the signal due to attenuation whereas the exponential with BZ is
responsible for the phase advance.

Dispersion distortion happens when Bz(w) is a nonlinear function
of frequency, i.e. the phase velocity is not constant with varying
frequencies. The effect of dispersion distortion can be visualized by
considering the pulse as a summation of many single frequency signals
with different amplitudes, i.e. a Fourier series representation. At
the beginning of the transmission line, all the signals line up
properly and add together to recreate the input signal. However, as

the pulse travels down the line, each frequency component travels at a



47

slightly different speed, since the phase velocity is not the same for
each frequency. Thus, each frequency component of the pulse arrives
slightly shifted in time with respect to the other components. Since
the frequency components do not add together as they did originally,
the pulse shape is distorted. Although dispersion distortion does not
change the amplitudes of the the individual frequency components, the
amplitude of the distorted pulse will normally be less than the
amplitude of the original pulse. In addition, the pulse spreads out in
time since some frequency components arrive earlier and some later than
if they had all traveled the same speed.

If az(w) is a constant with respect to frequency, then attenuation
will only reduce the amplitude of the signal and not distort it. On
the other hand, when az(w) varies with frequency, then each frequency
component is reduced by a different amount and it changes the
reconstruction of the signal. However, unlike dispersion distortion,
attenuation in general will not cause widening of the pulse, only a

reduction in amplitude.

3.2 Even/0Odd Mode Formulation

In 1956, J. Reed and H. Wheeler introduced a method for obtaining
the response of a symmetric four-port network called the even/odd mode
approach [25]. The even/odd mode approach, also known as the symmetry
approach, simplifies the analysis of a symmetric four-port network by
splitting it up into two simpler, two-port networks. Although this
method of analysis applies only to symmetric networks, asymmetric

networks can be analyzed in a similar fashion [26].
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The even/odd mode analysis begins by assuming that a signal of
unit amplitude is applied to port one as in Fig. 3.1, and the outputs
are measured at ports two and three. It is also assumed that ports two
and three are perfectly matched, so that there are no reflections. The
input signal is split up into two different signals, an even mode and
an odd mode as in Fig. 3.1. The even and odd mode signals are chosen
such that they add together to produce a unit amplitude signal at port
one and no signal at port four, recreating the original signal. The
even mode consists of two signals of one-half amplitude that are in
phase and so they create a voltage maximum at every point along the
line of symmetry. This is equivalent to an open circuit or a perfect
magnetic conductor separating the two lines. The odd mode, on the
other hand, has two signals of one-half amplitude that are 180 degrees
out of phase, and it produces a voltage minimum at every point along
the line of symmetry. This is equivalent to a short circuit or having
the lines separated by a perfect electric conductor. In general, the
even and the odd modes will have different phase velocities,
attenuation constants, and characteristic impedances.

Coupling distortion can best be understood by considering the
response on both lines to be a linear combination of four pulses, two
on each line, as in Fig. 3.2. In general, the in phase pair (even) and
the out of phase pair (odd), will travel down the line at two different
speeds, due to the differences in the phase velocities of the even and
odd modes. The even and odd modes pairs of pulses add constructively
on the signal line and destructively on the sense line. To isclate the

effects of even/odd mode distortion, a hypothetical lossless and
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dispersionless symmetric two conductor transmission line is considered.
A rectangular pulse is used for simplicity, and it is assumed that the
odd mode phase velocity is higher than that of the even mode.

When the signal first starts out, the even and odd pairs have not
separated very much, and almost completely cancel each other on the
sense line and reproduce the signal fairly accurately on the signal
line, as shown in Fig. 3.2(b). As the signal travels farther, Fig.
3.2(c), the even and odd pairs begin to separate. Now they do not
cancel completely on the sense line or reproduce the signal very well
on the signal line; the result being distortion and crosstalk. The
signal line response has also been widened and the leading and trailing
edges have dropped off in amplitude. After the signal has traveled a
very long distance, Fig. 3.2(d), the even and odd mode pairs separate
completely, so that there are two pulses of one-half amplitude that are
in phase on the signal line and two pulses of one-half amplitude that
are 180 degrees out of phase on the sense line.

In Fig. 3.2(b)-(d), the leading response of the sense line 1is
negative, because it was assumed that the odd mode had a higher phase
velocity than the even mode. If this is not the case, then the leading
response on the sense line is positive, because the even mode will
arrive before the odd mode. 1In addition, as the distance increases,
the amplitude of the response on both lines will tend to approach
one-half of the value of the response on a single, isolated line.

Since pulse spreading is due to the difference in the phase velocities,



52

the total pulse spread, in time, due to only even/odd distortion at a

distance z, can be written as

B e e (3.9)

where L and ¥y are the even and odd mode phase velocities,
respectively. Since the phase velocities are related to the effective
dielectric constants, (3.9) can also be written as

Ve - Ve (3.10)
re ro

z
t ==
S Cc

where cre and cro are the effective dielectric constants for the even
and odd modes, respectively, and c is the speed of light in free space.
Note that distortion due to coupling may be present even if the lines
are dispersive and lossy as well, since each of the three distortion
mechanisms, dispersion, losses, and coupling, are independent of each
other. If the transmission line is lossy and dispersive, then the
analysis is the same, except that the even and odd mode pairs suffer
distortion due to dispersion and losses as they travel down the line,
increasing the pulse spread and reducing further the amplitude of the

signal.

3.3 Symmetric Coupled Transmission Lines

In this section, the even/odd mode formulation is applied with the
frequency domain approach to determine the response on symmetric
coupled lines. To compute the response on both lines due to an input
signal on only one line, the input signal is split into the even and
odd mode components. The response on both lines due to each mode is

then obtained as a function of time or distance for a specific distance
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or time respectively. These responses are then added together to
obtain the total response on both lines at a particular time or
distance.

Using this approach, the response on both lines due to a signal on
the first line, the signal line, with no excitation on the second line,
the sense line, can be written using the superposition of the even and

odd mode responses as

vl(t,Z) [ve(t,Z) + vott,Z)] (3.11a)

1
N[

vz(t,z) [ve(t,z) - vott,z)] (3.11b)
where ve(t,z) and vo(t,z) are the responses of the even and odd modes,
respectively, to the input signal and vl(t,z) and v2(t,z) are the

voltages on lines one and two at a time t and position z. Using (3.8),

the even and odd mode responses can be written as

1 © —er(w)z jwt

ve(t,z) ~ J_m Viw,z) e e dw (3.12a)
1 © —yzo(w)z jwt

vO(t,z) = 5n I-m Viw,z) e e dw (3.12a)

where wze(w) and wzo(w) are the frequency dependent complex propagation
constants for the even and odd modes respectively. Substituting these

two equations into (3.1la) and (3.11b) yields

© -¥ z Jjwt -y z jwt]
1 ~
v (t,z) = —I Vi, z)|le %€ e +e 2% ¢ dw (3.13a)
1 4an
-m o)
o0 =Y _ z Jwt == jwt-
1 ~
v (t,z) = ﬁ,[ Yz le & a - ™ 5 dw (3.13a)
-0
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j - +
jwt z[arze ¥ 12

Factoring out e e Z0 4in (3.13a) and (3.13b) leads to
v (t,z) = _l i V(w z) ejmt e‘ZEWZe+7ZOI/2 X
;M T 2m g
-00
z[y_ —¥_1/2 -z[y_ -¥_1/2
% & ¢ Lea B e dw (3.14a)
NPT " Yo, 2) jut  -zly, +¥, 1/2
,(tez T ,z) e = X
-00
z[y —x_1/2 -zl¥_=-o_ _1/2
% a @O sl dw (3.14b)

These equations can be simplified further by recognizing that the terms
in the parenthesis in (3.14a) and (3.14b) are the hyperbolic cosine and
sine functions, respectively. Using this identity, (3.14a) and (3.14b)

can be expressed as

o jwut-z[y +y 1/2 S 1
1 ~ ze "zo zo " ze
vl(t,z) - I Viw,z) e cosh PR dew (3.15a)
i i J
® jwt-z[y__+y_  1/2 [ @, g ]
1 ~ ze "zOo ; z0 " ze
vz(t,z) = %n I . Viw,z) e sinh Z——— dw (3.15a)

Equations (3.15a) and (3.15b) may be used to compute the pulse
distortion on coupled, lossy, and dispersive transmission lines by
evaluating the integrals either in closed form or numerically.
However, in their present form these formulas do not give much insight
into the mechanisms of distortion due to coupling, losses, or
dispersion. In order to gain an understanding of these coupling
mechanisms, egquations (3.15a-b) need to be simplified to separate out
each of the three mechanisms.

The first step is to expand each term in the integrands into real

and imaginary parts. While many signals of interest are symmetric
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about some specific time and thus have a completely real Fourier
transform, many useful signals are asymmetric with respect to time, and
therefore their Fourier transforms are complex. The real part v(w,z)
is designated as Vr and the imaginary part as vi. In addition, to

simplify the notation, the following substitutions are made

¥.. % o -
M:RE[M] - zo_ze (3.16a)
2 2
A | B._-B
AR = Im[ M] _ .zo "ze (3.16b)
2 2
¥ +¥ o to
@ s Re[ zo ‘ze ] _ zo ze (3.16¢)
av 2 2
¥+ B _+B
zZ0 ze Z0 ze
Bav = Im[ 5 ] = 5 (3.16d)

Using these replacements, the integrands of (3.15a) and (3.15b) can be
rewritten as

jut-z(y_ +¥_1/2 - - §
I = V(w,z) e =8 4 cosh|z =

~ ~ _aav z j [wt_Bav Z]
= [Vr + 3 Vi]e [ cosh[z(&a + jABﬂ (3.17a)
jwt-zly_+¥__1/2 v~
I = V(w,z)e AR sinh z—EE--—EE
2 2
P o~ "“Evz jlwt“ﬁ%vzl
= [Vr + ] Vi]e e sinh[z(Aa + jABq (3.17b)

Next the complex exponential in (3.17a-b) is expanded into cosine and

sine terms giving

-0 2
av ~ , o~ z i
I, = V +3 V¥ t- + t -
" e [r | i][cos(w Bavz) j sin(w {:E_:wz)] X

cosh[z(na + jAB)] (3.18a)
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oz

av 0 |~ y ;
I = e [Vr + 3 Vi][cos(wt Bavz) + j sin(wt Bavz)] X
sinh[z(Aa + jAB)] (3.18b)

The hyperbolic sine and cosine can also be expanded into real and
imaginary parts with the following formulas
sinh (8+j¢) = sinh(8)cos(¢) + j cosh(8)sin(¢) (3.19a)
cosh(B+j¢) = cosh(B)cos(¢) + 3 sinh(B)sin(¢) (3.19b)

Using these formulas in (3.18a-b) leads to

-0 2z
av ~ - P
I1 = e [Vr + 3 Vi] [cos(wt—BaV z) + J sin(wt Bavz)] s
[COSh(Aaz) cos (ABz) + j sinh (Aaz) sin(ABz)] (3.20a)
-mavz
12 = e [Vr + 3 Vi] [cos(wt—Bavz) + 3 s:.n(wt—Bavz)] X

[sinh(Aaz) cos (ABz) + j cosh(Aaz) sin(ABz)] (3.20b)

Finally, the multiplications in (3.20a) and (3.20b) are carried out and
the results are separated into real and imaginary parts. The real part

of the first integrand is
-aavz
Re(Il) = e {Vr[cos(wt-Bavz) cos (ABz) cosh (Aaz)
- sin(wt-Bavz) sin (ABz) sinh(Aaz)]
- V.[sin(wt-B z) cos(ABz) cosh (Aaz)
i av

+ cos(wt-Bavz) sin (ABz) sinh(ﬂaz)]} (3.21a)



and its imaginary part is

z
Im(Il) = e e {Vr[sin(wt—ﬁavz)

+ cos(wt- z
os ( Bav )

+ vi[cos(wt—Bavz) cos (ABz)

=, sin(wt—Bavz)

cos (ABz)

sin (ABz)

sin (ABz)
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cosh (Aaz)
sinh(Aaz)]
cosh (Axz)

sinh(ﬂaz)]} (3.215h)

Similarly, the real part of the second integrand is found to be

-a z
av ~
Re(12) = e {Vr[cos(wt—ﬁavz)
- sin(wt~Bavz)
= Vi[51n(wt-ﬁavz)
+ cos(wt—Bavz)
and its imaginary part is
—a Z

Im(I2) = e {VI[SLn(wt—Bavz)

.i. -
cos (wt Bavz)
+ Vi[cos(wt—Bavz)

~ sin(wt-Bavz)

cos (ABz)

sin (ABz)

cos (ABz)

sin (ABz)

cos (ABz)

sin (ABz)

cos (ABz)

sin (ABz)

sinh (Aaz)
cosh(Amz)]
sinh (Axz)

cosh(Aaz)]} {(3.21c)

sinh (Aaz)
cosh(Aaz)]
sinh (Aaz)

cosh(baz)]} (3.21d)

For real time signals, the real part of the Fourier transform, Vr,

is an even function of w, and the imaginary part, V,, is an odd

K

function of w [51]. 1In addition, while Bz(w) is an odd function of w,

az(w) is an even function of w. This can be shown by considering the

phase propagation equation for both positive and negative frequencies.
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For positive frequencies, the phase accumulation of a propagating wave
is
Jwt—Wz(w)z -az(w)z j[wt-ﬁz(w)z]

p(w) = e = e e (3.22)

and for negative frequencies,

—jwt—yz(—w)z -az(—w)z -j{wt+Bz(-w)z]
p(-w) =e = e e (3.23)

In order to satisfy the outward radiation condition, the magnitude of
the signal cannot increase with increasing distance, and so az(-w) must
be equal to az(w). Similarly, in order for phase to advance as
distance or time increases then Bz(—w) must be equal to —Bz(w). Thus
az(w) is an even function of frequency and Bz(w) is an odd function.
Note that the imaginary part of the integrands in (3.21b) and
(3.21d) are odd functions of w and that the integrals in (3.15a) and
(3.15b) are over symmetric interval, from minus infinity to plus
infinity. Since the integral of an odd function over a symmetric
interval is zero, the imaginary components of the integrand do not
contribute to the voltage responses and can be ignored. On the other
hand, the real part of the integrands, (3.2la) and (3.21c), are even
functions of w, and so the integration from minus infinity to plus
infinity will be simply twice the integration from zero to either plus
or minus infinity. This is the anticipated result, since if real time
signal is input to a real system, then the output should be a real
function as well. Eliminating the imaginary parts, the two integrands

become
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-0 Z r
I =e {V cos(wt—Bavz) cos (ABz) cosh(Auz)

- sin(wt—Bavz) sin (ABz) sinh(Aaz)]

.
- ¥ sin(wt-ﬁavz) cos (ABz) cosh (Axz)

L.

+ cos(wt-Bavz) sin (ABz) sinh(Aaz)]} (3.24a)

- z
av ~ '
I ==¢e {Vr[cos(wt—Bavz) cos (ABz) sinh (Awaz)
= sin(wt~ﬁavz) sin (ABz) cosh(Aaz)]
- Vi[31n(wt—Bavz) cos (ABz) sinh (Axz)
+ cos(wt-Bavz) sin (ABz) cosh(Aaz)]} (3.24Db)

Equations (3.24a) and (3.24b) are the most general forms of the
integrands in (3.15a) and (3.15b). The sine and cosine terms with Bav
represent the propagation of the signals at an average phase velocity,
while the AB sine and cosine terms account for the distortion of the
signal due to even/odd mode coupling. Similarly, the signals can be
thought of as having and average attenuation value of aav’ due to the
real exponential, while attenuation coupling between the lines is due
to the hyperbolic sine and cosine terms with Aa arguments.

Having obtained these formulas, some special cases may be
considered. If the attenuation constants are the same for each mode,

then Ax = 0 and aav = az. This reduces (3.2la-b) to

-0 z
z ~ no,
e cos (ABz) {Vrcos(wt—Bavz) = Vi51n(wt—3avz)} (3.22a)

H
1

-0 2
A 5 ~ . ~
I =-e 51n(ABz){Vr51n(wt—Bavz) + vicos(wt—Bavz)} (3.22b)
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In this case, the signals on both lines are attenuated equally, but
there is coupling due to AB and dispersion if Bze and Bzo are functions
of frequency.

If, in addition, the propagation constants for the even and odd
modes are equal, i.e. AB = 0 and Bav = Bz, then there is no response on
the sense line, and the signal line response is given as

-OCZZ o o

I1 = e {Vrcos(wt-Bzz) - Visin(wt-Bzz)} (3.23)
This is the familiar result for pulse propagation on a single,
isolated, lossy transmission line [40], [41], [44], [46].

However, if the attenuation constants for the even and odd modes

are different but the propagation constants are the same, then the

voltages on the two lines can be expressed as

-0 Z

I =e & cosh (Aaz) {V cos (wt=-B_ z) = V.sin(wt—ﬁ z)} (3.22a)
r av 1 av

-0z

av = ~ ~ ;
I =e sinh (Aaz) {Vrcos(wt Bavz) V151n(wt Bavz)} (3.22b)

Expanding the hyperbolic sine and cosine into exponentials and
multiplying the result with the exponential in front of (3.22a) and

(3.22b) results in

1 _azez _“zoz ~ ~

I1 = 5[8 + e ][Vrcos(wt—Bavz) = Vi sin(wt-Bavz)] (3.22a)
i _azez _uzoz ~ ~

I2 = 5[9 - e ][Vrcos (wt-Bavz) - vi sin(wt—Bavz)] (3.22b)

Since the exponentials in (3.22b) are not equal, then 12 is
non-zero and therefore there will be a response on the sense line. Thus
even if the phase velocities of the even and the odd mode are the same,

there still may be coupling due to differences in the attenuation
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constants for the two modes. The response on the sense line has zero
magnitude at z, = 0 and is zero again as z, — o. The maximum response
on the sense line occurs when the derivative with respect to z of the

exponentials in the front of (3.22b) vanishes, i.e.

d _azoz -ahez
-— [e - e ] =0 (3:23)
dz

Performing the indicated derivative,

-azez -uzoz
-0 e + « e =0 - (3.24)
ze Z0

-0 z -0z

o e ™o o e £ (3.25)
ze zZ0

Both sides are multiplied by exp(azoz)/aze, giving

—azez+azoz azo
" . (3.26)

o
ze
To remove the exponential, the natural logarithm is taken of both
sides.

- z +a¢ z = 1ln(a /oo ) (3.27)
ze Z0 ZzO ze

This equation can now be easily solved for =z.
In(a_ /e )
g B B (3.28)
o -0
zo ze

This is the position of the maximum response on the sense line due to
attenuation coupling. Note that if the attenuation constants are a
function of frequency, which is usually the case, then location of the
maximum sense line response is different for each frequency component
of the pulse. Thus it may not be possible to accurately predict, using
(3.28) the actual location of the maximum sense line response due to
attenuation coupling.

Using Fourier transform theory and the even/odd mode approach, the

equations for signal propagation on symmetric coupled, lossy, and
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dispersive transmission lines were derived. The Fourier transform
provides a simple and straightforward way to represent the frequency
dependent characteristics of both the transmission line and the signal,
allowing quick computation of the time domain response of the system.
The even/odd mode approach reduces the symmetric four-port system by
representing it as two simple two-port networks. Together, these two
methods were used to derive equations that relate the distortion
mechanisms of dispersion, even/odd mode coupling, and attenuation

coupling.



CHAPTER 4
RESULTS

This chapter uses the formulations from chapters two and three to
compute the frequency dependent parameters of complex microstrip
structures and to analyze pulse distortion due to dispersion and
coupling on these lines. 1Initially, a very simple structure is
considered, the single layer open symmetric coupled microstrip. The
effective dielectric constant is computed versus frequency for
different substrate materials and strip spacings. Using this data,
pulse distortion on these structures is considered for different
lengths and spacings. Next, the generalized Green’s function is used
to compute the effective dielectric constant of structures with
multiple dielectric layers. Again results are presented for different
spacings, materials, and heights of the layers. Finally multilayer
symmetric coupled microstrips are considered, particularly with respect
to structures that exhibit low coupling due to the control of the

electrical properties of the substrates and superstrates.

4.1 Symmetric Coupled Microstrips

Coupling between adjacent transmission lines is a very important
consideration in circuit design, since it is a limiting factor in the
overall size and operation speed of the circuit. However, due to the

wideband nature of finite time domain signals, no single parameter or
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rule of thumb can accurately take into account the effects of coupling
on pulse propagation, especially for multilayer structures. For
accurate results, the analysis needs to be carried out in a more
rigorous manner, considering the distance the signal travels and the
entire spectrum of both the signal and the impulse response of the
network.

This section considers open symmetric coupled microstrip
structures with a single dielectric substrate. While this is not a
very complex structure, it is very useful in demonstrating many of the
principles of coupling and dispersion distortion. Four different
dielectric substrates are used throughout this chapter as typical
examples of some of the different types of materials that are used in

production: 1) RT/duroid 5880, er = 2.2, 2) beryllium oxide, er = 6.8,

3) alumina, €

. 9.7, and 4) gallium arsenide, er = 12.2. To

demonstrate distortion, a Gaussian pulse is used which has time and

frequency responses given by

-1n(2) (t/7)° N —  -(wt/2)°/1n(2)
v(t) = RAe «— V(w) = AT I-———— e (4.1)
1n(2)

where A is the amplitude of the pulse, T is the voltage half width-
half amplitude maximum, and the pulse is centered about t = 0.

The effective dielectric constant of the even mode, cre, and the
odd mode, € v are plotted as a function of frequency in Figs. 4.1
through 4.8 for the four different substrate materials with six
different spacings. The even mode is shown in Figs. 4.1, 4.3, 4.5, and
4.7, while the odd mode is graphed in Figs. 4.2, 4.4, 4.6, and 4.8.

The smallest spacing, 8 = 0.6 mm is very close and would normally be
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used only when strong coupling between the lines is desired. The
values for s = 5.0 mm, both even and odd mode, are very close to the
values for s — w, i.e. a single isolated microstrip, and so B M
for this spacing. In microwave circuit design, the most common rule of
thumb for designing uncoupled lines is to place them at least three
center conductor widths or three substrate heights apart. For the
substrate height and center conductor width of Figs. 4.1-4.8, this
spacing is represented by the s = 1.8 mm graphs. The greatest
difference in ere and ero for the single layer configuration occurs
when the spacing is the smallest. As the spacing increases, Ere

decreases in value, € o increases, and both asymptotically approach the

value of € for a single isolated microstrip.

eff
As can be seen from the derivation in Chapter 3, dispersion
distortion is due to the change in the phase velocity with frequency.
In particular, dispersion distortion of finite time domain signals is
related to the differences in the inverse of the phase velocities over
the band of frequencies of interest. Since the inverse of the phase

velocity is proportional to the square root of the effective dielectric

constant, the amount of distortion due to dispersion is related to

Ve (fl) - Ve (4.2)

reff reff(fz)

where £ is the distance traveled down the line, and f1 and f2 are the
lower and upper frequencies that define the band of interest. Thus,
the amount of dispersion that is acceptable depends on three factors;
1) how Ereff varies as a function of frequency, 2) the bandwidth of the

system and signal, and 3) the distance the pulse must travel. The

least dispersive structure of the four is the RT/duroid 5880 substrate,
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whose results are shown in Figs. 4.1 and 4.2, since its effective
dielectric constant changes very little, only about 0.23 from 0 to 125
GHz. The beryllium oxide, Fig. 4.3 and 4.4, and alumina substrates,
Fig. 4.5 and 4.6, are a little more dispersive than the duroid and the
gallium arsenide is the most dispersive, showing a change in E it of
about 3.8 from 0 to 125 GHz.

While dispersion is an important consideration in the design of
MMIC’s, the effects of coupling distortion and crosstalk also are a
major concern. Since both coupling distortion and crosstalk are due to
the difference in the even and odd mode phase velocities, the amount of
pulse spread due to even/odd coupling is characteristic of the amount

of pulse distortion due to coupling. From (3.24a-b) the amount of

pulse spread due to differences in € . and € _, can be written as

t () = E[1/s: (w) - Ve (w)] (4.3)
S C re ro

where ts(w) is the amount of pulse spread in time for a given
frequency, £ is the distance traveled, and ¢ is the speed of light.
Figs. 4.9 and 4.10 show - and e, as a function of frequency for the
four different substrates. As the substrate dielectric constant
increases, the separation between ere and €6 at a given frequency
increases as well. Thus the gallium arsenide substrate has a much
tighter coupling between the lines than the duroid for structures with
identical dimensions. For the single layer microstrip, the largest
difference in P and ero occurs at low frequencies, in the quasi-TEM

region, although this is not the case for all structures, as will be
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shown in section 4.3. As frequency increases, i and € o approach the
value of € off for the isolated microstrip.

This behavior is characteristic of all coupled microstrip
structures, even multilayer ones, because as frequency increases, the
electrical distance separating the coupled lines increases, decreasing
the coupling and enhancing the isolation of the lines. So while
dispersion is a high frequency concern, since it increases as the
bandwidth of the signal increases, even/odd mode coupling is normally a
low frequency phenomenon, decreasing as frequency increases. Therefore,
even if the signal is narrowband and therefore would not experience
significant dispersion distortion, even/odd mode distortion, however,
may be an important factor in the design.

Now that the frequency dependent effective dielectric constant has
been computed for the structures, pulse distortion can be considered
using the Fourier transform approach. Throughout this chapter four
different designations are used to refer to the time domain responses
of the transmission lines; signal line, sense line, undistorted, and
isolated. The undistorted designation refers to pulses that are
propagated on a TEM, lossless, uncoupled transmission line whose
effective dielectric constant is invariant with respect to frequency
and it is equal to the zero frequency value of the structure being
considered, i.e. € ff(w) = ereff(o) for all w. The isolated response
indicates that the pulse is sent down a dispersive, lossless, and

uncoupled transmission line. The effective dielectric constant for

this pulse is computed using the SDA with just a single center
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conductor whose width is the same as the width of either center
conductor of the symmetric coupled lines.

When the signal is impressed on a coupled line, there are two time
domain responses of interest, the response on the line where the signal
is impressed, called the signal line, and the response on the line
coupled to it, referred to as the sense line. The amount of distortion
due to dispersion is shown by the difference between the undistorted
and the isolated response. Distortion due to even/odd mode coupling is
represented by the difference between the isolated line and the signal
line waveforms, and the sense line response gives an indication of the
amount of crosstalk present in the structure.

The effects of dispersion distortion and even/odd mode coupling
distortion on pulse propagation are shown in Figs. 4.11 through 4.18
for different distances and substrate materials. A Gaussian pulse with
an amplitude of 5 and a T equal to 30 picoseconds is used along with a
spacing, center conductor width, and substrate height of 0.6 mm. Since
the pulse travels at different speeds on each substrate, the distances
were scaled appropriately to have all the responses arrive at similar
times and to more clearly illustrate the distortion mechanisms. Also,
two distances were chosen for each pulse, in order to show how
increasing distance affects both coupling and dispersion distortion.

The first structure considered, shown in Figs. 4.11 and 4.12, uses
RT/duroid as the substrate material. In spite of the large distance
that the input signal has traveled, it shows very little distortion due
to dispersion. Even at 250 mm, the isolated and undistorted responses

agree very well. Even/odd mode distortion, on the other hand, has
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significantly degraded the signal line response at just 125 mm, and
shows a large response on the sense line as well. At 250 mm the signal
has become almost unrecognizable and the sense line response has risen
to almost the same amplitude as the signal line.

As the relative dielectric constant of the substrate increases,
changing from 2.2 to 6.8 and 9.7, the effects of dispersion become more
pronounced due to the greater change in the phase velocity with
frequency for these structures. The beryllium oxide substrate, Figs.
4,13 and 4.14, has slightly more distortion due to dispersion,
particularly at 1 = 150 mm, and even/odd mode distortion affects the
pulse even more than the duroid structure did. At 150 mm, the signal
line response begins to look like two separate in phase pulses and the
sense line like two pulses, 180 degrees out of phase. Also, like all
the pulse response graphs in this section, the leading response on the
sense line is negative, indicating that the odd mode leads the even
mode. In other words, the odd mode phase velocity is greater than the
even mode and hence cre > € o This is characteristic of all single
layer microstrip structures, but as will be shown in section 4.2, it is
not necessarily true for multilayer structures., The structure with
alumina substrate, Figs. 4.15 and 4.16, has results very similar to the
beryllium oxide, except that the distances have decreased from 75 and
150 mm to 62.5 and 125 mm and the distortion of the pulses has
increased slightly.

The gallium arsenide structure, as anticipated, has the greatest
dispersion and coupling distortion of the four substrate materials. 1In

spite of having scaled the distances down to 50 and 100 mm, there is
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still significant distortion, both from coupling and dispersion. At
50mm, dispersion has shifted the pulse in time, slowing it down
slightly, as well as widening it. Coupling had reduced the signal line
to 70 percent of the original amplitude and has a sense line response
that is almost 50 percent of the undistorted pulse. By 100 mm, both
the signal and sense line responses have separated almost completely
into the even and odd mode pulses. Unlike the other substrates,
dispersion adds significant distortion to the pulse, reducing the
amplitude by ten percent and significantly increasing the pulse width.

The effect of center conductor spacing on the transient response
of the coupled transmission lines is as important as the distance
considerations. Figures 4.19 through 4.26 show the effects of
different line spacings on pulse distortion for the four different
substrates. The signal line responses are given in Figs. 4.19, 4.21,
4,23, and 4.25 with the corresponding sense line values in Figs. 4.20,
4.22, 4.24, and 4.26. The isolated response, i.e. s = w, is not
included, but is closely approximated by the s = 5 mm response on the
signal line and by a zero response on the sense line.

As before, the structure with RT/duroid substrate, with results
shown in Figs. 4.19 and 4.20, is not significantly affected by the
dispersive effects of the line, but is highly susceptible to coupling
distortion. At the smallest spacing, s = 0.6 mm, the signal line
amplitude has decreased by one-half and the sense line has risen to the
same magnitude as the signal line. As the spacing increases, the
amplitude on the signal line increases and the sense line decreases.

When s = 1.8 mm, the signal line response has been degraded by only 10
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percent, but the sense line is up to 35 percent of the initial
amplitude of the input pulse. Depending on the system specification,
this may be too large of a spurious signal, even though this spacing
satisfies the normal design criteria.

Increasing the substrate relative dielectric constant to 6.8,
Figs. 4.21 and 4.22, and 9.7, Figs. 4.23 and 4.24, increases dispersion
and coupling distortion even as the distance traveled decreases. At
the smaller spacings, s = 0.6 mm and s = 1.2 mm, the tighter coupling
on this structure causes both the signal and sense line responses to
separate into the even and odd mode pulses, i.e. two pulses in phase on
the signal line, and two pulses 180 degrees out of phase on the sense
line. Due to the distortion of the pulse from dispersion, the maximum
positive sense line response, which is greater than one-half of the
amplitude of the undistorted signal, occurs when the spacing is 1.8 mm
and is slightly less for the smaller spacings. Normally, it is
expected that the sense line amplitude would not exceed one-half of the
input signal because, as shown in section 3.2, the magnitude of both
the signal and sense line responses tend to approach one-half the
original amplitude as the even and odd mode pulses separate completely.

The larger response on the sense line is a result of the increased
dispersive characteristics of the line due to the higher relative
dielectric constant. This can be visualized by approximating the
distortion due to coupling, as in Fig. 3.2, as being a result only of
the separation of the even and odd mode pulse pairs over distance due
to differences in the modal phase velocity. To include the effects of

dispersion, the undistorted pulse pairs in Fig. 3.2 are replaced with
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one-half of the isolated line's response. This is only approximate,
because the difference in the modal phase velocity is a function of
frequency, and therefore affects each frequency component of the pulse
differently and also because the dispersive characteristics of the even
and odd modes, while being very similar, are not quite exactly the
same.

In Figs. 4.21 and 4.23, the isolated line response is
approximately the same as the s = 5.0mm graphs. In both graphs, either
5. - 6.8 or er = 9.7, the isolated pulse has a relatively large
negative swing on the trailing edge due to the dispersion distortion.
Since the sense line response is equal to the even mode response minus
the odd mode response (eq. 3.1la), and because the odd mode leads the
even mode, the trailing negative swing of the odd mode pulse adds
constructively to the even mode pulse. This constructive interference
increases the sense line response so that it is larger than one-half of
the input signal. Therefore the maximum possible sense line response,
for a given spacing, would occur when the maximum of the negative swing
of the odd mode pulse aligns with the positive maximum of the even mode
pulse. Since the odd mode leads the even mode in this structure, there
is no possibility of constructive interference in the sense line’s
negative leading response, and so it attains a maximum when the line
spacing is a minimum. Thus in order to obtain accurate predictions of
the signal and sense line responses, the dispersive characteristics of
the line, as well as the pulse spectrum must be accounted for in a

rigorous manner, such as the Fourier transform approach used in this

report.
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When the relative dielectric constant of the substrate is
increased to 12.2, Figs. 4.25 and 4.26, both dispersion and coupling
have a significant effect on the distortion of the pulse. The signal
and sense line responses on the gallium arsenide substrate are very
similar to the corresponding pulse shapes for the beryllium oxide and
alumina substrates, except that the pulses on the gallium arsenide
structure are affected significantly more by dispersion.

The s = 5.0 mm graph, in which dispersion distortion is the
dominant mechanism, shows a 12 percent reduction in the maximum
amplitude on the signal line. In addition, the magnitude of the
negative trailing swing of the signal line has risen to over 20 percent
of the undistorted amplitude. Like the previous two substrate
materials, the maximum positive sense line response does not occur when
the spacing is the smallest but instead happens for s = 1.2 mm or
1.8 mm.

When s = 1.8 mm, the signal line response has degraded to 65
percent of the initial amplitude and the sense line response has risen
to a maximum magnitude of 50 percent of the undistorted value. For
most circuits, these would be unacceptable values for coupling loss and
the amount of crosstalk, even though this spacing is within the three
widths/heights rule of thumb. At a smaller distance, the amount of
coupling will not be as great, but clearly, the allowable proximity of
the transmission lines for uncoupled operation depends not only on the
spacing of the center conductors, but also the substrate materials,
structural dimensions, and the distance over which the lines are

coupled to each other. In general, for single layer microstrips,
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relatively short distances and/or small dielectric constants allow
smaller spacings while longer distances and/or larger dielectric
constants require larger spacings.

Using the Spectral Domain Approach to determine the line
parameters and the even/odd mode formulation with the Fourier transform
approach to compute the time domain results, the transient analysis of
coupled lines has been analyzed, showing the effects of both dispersion
and even/odd mode coupling distortion. First, the frequency dependent
ereff of the coupled lines were presented for both the even and the odd
modes with different line spacings and substrate materials. These
results were then used to examine pulse distortion on tightly coupled
lines at different distances, showing how both dispersion and even/odd
mode coupling distort the input pulse and produce a spurious response
on the adjacent line. Next, pulse distortion was studied as a function
of the spacing between the center conductors. This analysis showed how
the dispersive characteristics of the lines can cause constructive
interferences on the sense line, giving a larger response than
anticipated. 1In addition, these results showed that not only the
separation of the center conductors needs to be considered in designing
decoupled lines, but equally important factors are; the substrate

material, structural dimensions, and the distance over which the lines

are close to each other.

4.2 Multilayer Structures
The desire to improve the performance of MMIC’s and the increasing

interest in them has created a demand for the accurate characterization
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of multi-layer structures, and therefore requires the use of rigorous
analytical techniques. The desire to equalize the even and odd mode
phase velocities in coupled lines, as well to limit the space
requirements, have made multilayer structures attractive for many
applications as well. A full wave analysis is necessary because the
addition of either substrates or superstrates produces significant
changes in the frequency dependent parameters that cannot be predicted
accurately by quasi-static or other approximate formulations.

This section uses the generalized Green’s function in conjunction
with the SDA to compute the frequency dependent parameters of both
single and coupled lines for multilayer structures. First the
effective dielectric constant is computed as a function of frequency
for different combinations of substrate materials and heights to
illustrate the effect of the addition of substrates on the line’s
performance. Next a superstrate of varying height with the same
relative dielectric constant as the substrate is added to an open
coupled line structure to consider the effects of superstrates. Then
as the height of the superstrate layer is fixed, an upper ground plane
is introduced, and the ereff for the isolated, even, and odd mode cases
is plotted as the height of the ground plane is varied. Finally, an
open symmetric coupled line structure with two substrates is used to
show how exchanging the two relative dielectric constants of the

substrates changes both Cr and pulse propagation when all other

eff
dimensions are held constant.

Increasing the number of layers, either substrates or

superstrates, can create a significant difference in the effective
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dielectric constant. An open single microstrip with two substrates is
used in Figs. 4.27 through 4.30 to illustrate the effects of these
additional substrates. The total substrate height is held constant and
six different combinations of hL2 and hLl are used. The hL2 = 0.6

mm graph represents a single substrate structure with a relative
dielectric constant of € ¢ Likewise the hL2 = 0.0 mm graph also
represents a single substrate line, but with a relative dielectric
constant of crLl. The other graphs represent two substrate structures
where the heights of the substrates are hL2 and hLl' with relative

dielectric constants of € and - respectively.

The effective dielectric constant begins at the single layer value
for CrLl when hL2 = 0.0 mm, or zero percent of the total height. Since
the dielectric substrate being added has a lower relative dielectric
constant than the substrate already present, as hL2 increases, Creff
begins to decrease. The hL2 values of 0.1, 0.25, 0.35, and 0.5 mm

represent, respectively, changes of 16.6, 41.6, 58.3 and 83.3 percent.

When hL2 = 0.6 mm, or 100 percent of the total height, Ereff is

identical to the single layer value for € Thus the expectation is

that e will decrease monotonically as hL2 increases and the total

eff

change in €, at a given frequency will be equal to

eff

L1 L2
Aereff(f) i Creff(f) - Creff(f) (4.4)

where the L1 and L2 superscripts indicate that € off is evaluated for a

single substrate microstrip with a relative dielectric constant of £ =y

and crLz, respectively.
The first structure, with its results shown in Fig. 4.27, consists

of a layer of RT/duroid on top of a layer of beryllium oxide. At low
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frequencies, the smallest duroid layer, h = 0.1 mm, decreases Br

L2 eff

by 55 percent of Aer even though the height added is only 16.6

eff
percent of the total height. When hL2 = 0.25 mm, or 41.6 percent of
the total height, the decrease in ereff is almost 80 percent. In Fig.
4,28, which represents data for a structure with duroid on alumina, the
difference at low frequencies is even larger; that is the 16.6 percent
height change gives a 62 percent change in creff and the 41.6 percent

height change results in a difference in € of 85 percent of Acr

eff eff’

Thus the addition of a relatively thin substrate can have a profound
impact on the effective dielectric constant of a multilayer structure,
especially for the lower frequencies.

The third structure, gallium arsenide on beryllium oxide, shown in
Fig.4.29, gives results that are similar to the previous ones. The
addition of the 0.1 mm layer gives a 44.7 percent decrease while the
change of hL2 from 0.5 mm to 0.6 mm results in only a change of only 6

percent of Aer at low frequencies. Therefore, while the addition of

eff
a thin upper substrate layer with a lower e gives large changes in
Ereff' the addition of an equally thin lower substrate layer with

higher 2. results in relatively small changes in € off Also, as the
beryllium oxide layer is increased in height, the dispersive
characteristics of the structure decrease. This is expected because
single layer structures are less dispersive when the relative
dielectric constant of the substrate is less.

The final two substrate configuration considered has a layer of

alumina on a layer of gallium arsenide. The results, plotted in Fig.

4.30, do not have as drastic of changes in € fg A those of the
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previous graphs, because the relative dielectric constants of the
substrates are closer to each other than those of the previous
structures. At low frequencies, the 0.1 mm and 0.25 mm graphs have

changes of only 38 and 64 percent of Acr respectively. However,

eff
like the other structures, as frequency increases, the percent changes

]

in ereff become closer to the percent changes in the layer height. At

100 GHz, the 0.1 and 0.25 mm structures have changes in € off of 16.3

and 36.2 percent of Aer which are much closer to the height changes

eff’
of 16.7 and 41.6 percent of the total height. Additionally, the
increase in hL1 to 0.1 mm (hL2 = 0.5 mm) and 0.25 mm (hL2 = 0.35 mm),
gives changes of 16.8 and 46.7 percent respectively, which are much
closer to the corresponding changes for hLz' Note that while at low
frequencies the addition of a thin upper substrate gives a much larger
change in Ereff than the addition of a thin lower substrate, as the
frequency is increased, the addition of a lower substrate gives about the
same change as the addition of an upper substrate.

This change in the effect of upper and lower substrates as the
frequency is increased can be attributed to changes in the electric
field structure as the frequency increases beyond the guasi-static
region. As the frequency is increased, the electric field lines tend
to bunch underneath the center conductor, connecting directly with the
ground plane, rather than fringing out into the upper layers., This
results in a field configuration that is similar to a parallel plate
capacitor filled with two different dielectric slabs. Since the

parameters of the parallel plate capacitor are independent of the

relative placement of the slabs, then the microstrip parameters, in the
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high frequency region, will also be independent of the substrate
placement.

Since at very high frequencies the microstrip may be approximated
by a parallel plate capacitor, it is instructive to consider the
equivalent dielectric constant of a two-layer parallel plate capacitor.
The equivalent dielectric constant, ceqv' of the dual dielectric
parallel plate capacitor is the dielectric constant of a single layer
of height thHHQ that when used in the parallel plate capacitor gives
the same capacitance as one filled with two layers that have dielectric
constants €5 and €, and heights hL1 and hLz' Using elementary
circuit theory and the capacitance formula for a parallel plate

capacitor, the equivalent dielectric constant is found to be

h}..Zﬁlhhf..l
€ = (4.5)
e hL2/BL2+hL1/8L1
eeqv is also the high frequency limit of ereff' T - P
lim € (f) = ¢ (4.6)
£-50 reff eqv

Note that this equivalence applies only at frequencies that are
sufficiently high so that almost all the electric field lines lie
directly between the center conductor and the ground plane with almost
no fringing. This concept of the equivalent dielectric constant can be
extended to include more dielectric layers by characterizing each layer
as another parallel plate capacitor attached in series.

Since the difference in the even and odd mode phase velocity
degrades the performance of a circuit, it is advantageous to be able to
equalize the modal phase velocities. One method that has been used in

the past to accomplish this is to place a superstrate layer with the
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same dielectric constant as the substrate on top of the center
conductors. If the height of this superstrate is adjusted properly,
then the even and odd mode phase velocities will be equalized. The
concept behind this approach is that striplines, which have a
homogeneous dielectric medium, are TEM structures where the even and
odd mode phase velocities are equal. Thus the placement of such a
layer of the correct thickness would make the microstrip more like
the stripline, i.e. a more homogeneous medium, and hence equalize the
even and odd mode phase velocities.

This method of equalizing the modal velocities is now applied to
structures with four different substrates and the results are shown in
Figs. 4.31 through 4.34. The configuration, which is shown in each of
the figures, is an open symmetric coupled microstrip with a single
substrate and two superstrates where hUl — w, All four structures are
considered at £ = 100 MHz, which is in the quasi-static region for
these microstrips. This frequency was chosen because it gives very
broadband characteristics, from 0 to about 1 GHz, and because many
microstrip designs operate in or near the quasi-static region.

In each of the four graphs, when the superstrate layer is very
thin, there is not much effect on the effective dielectric constant.
However, when the thickness of the superstrate is increased to 10
percent of the substrate height, then ereff for all three cases,
isolated, even mode, and odd mode, begins to increase as well. The
effect of the superstrate layer is more pronounced, however, if its
dielectric constant is much larger than that of the substrate. The odd

mode effective dielectric constant, however, increases much faster in
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this region than the other two Sreff’s' When hU2 equals infinity, then
the microstrips are imbedded in a completely homogenecus medium with a
relative dielectric constant of crL1 = Cruz' Therefore, in the limit

as hU2 goes to infinity, the effective dielectric constants for all
three cases approach the relative dielectric constant of the substrate.
For the four structures used, the infinite height condition is
approximately satisfied when h02 is about 10 times hLl, i.e. when

huz = 10 mm.

Although the modal phase velocities are approximately equal when
hU2 is about 10 times hLl, this is not a very efficient design due to
the extraordinarily large thickness of the superstrate. Aside from the
expense of such a circuit, the large dielectric slab could support
spurious guided wave modes at relatively low frequencies that would be
excited by discontinuities in the lines. However, because the
effective dielectric constant of the odd mode increases much faster
than the even mode for each of the four structures, at one other hU2
value besides infinity, the even and odd mode phase velocities are
equal. For all four materials being considered, this occurs when huz
is approximately the same height as the substrate. The even/odd mode
equalization occurs when hU2 = 0.97 mm for the duroid and moves
slightly higher as the dielectric constant increases. For the
beryllium oxide substrate and superstrate combination, the equalization
occurs when hU2 is equal to 1.06 mm and at around 1.07 mm for both the
alumina and gallium arsenide structures.

The motivation behind adding a superstrate layer to the microstrip

was to make the structure more TEM, like the stripline, by making the
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dielectric surrounding the center conductors seem approximately
homogeneous. For the structures considered, this approximation to the
stripline occurred when the superstrate layer was about ten times the
substrate layer. This might have been anticipated because a shielded
microstrip has approximately the same characteristics as an open
microstrip. This is more evident when the distance to the upper ground
plane and side walls are at least five times the substrate height or
center conductor width [46]. However, the even/odd mode equalization
also occurred for a much smaller hU2 value, a value at which the
structure does not approximate the stripline and is not TEM. Also note
that when hU2 is greater than this first equalization point, the odd
something that did

mode’s cr is greater than the even mode’s ¢

eff reff’

not occur in the single layer structure. This indicates that a
completely different mechanism is responsible for the equalization of
the even and odd mode phase velocities.

As long as the microstrip is operated in the quasi-static region,
then the location of the equalization point stays constant, because
ereff is constant for the frequencies in this region. However, as the
frequency increases past the quasi-static region of the structure, the
location of this equalization point moves to larger values of the
superstrate height. At some frequency outside the quasi-static region,
the equalization point changes to a value so large that it gives no
advantage in design, essentially eliminating it as a possibility. This
occurs because as frequency increases, the electric field lines tend to

go in a straight line from the center conductor to the ground plane

with less and less lines in the superstrate regions. Thus the
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superstrate has a decreasing effect on cr as the frequency

eff
increases.

While the inability to find a realizable superstrate height that
matches the even and odd mode phase velocities at high frequencies is a
significant drawback to this method, many microwave circuits operate in
the quasi-static region, and so there are applications that can use
this concept. In addition, it will be shown in section 4.3 that this
even/odd mode equalization phenomenon can also occur when multiple
substrates are used in the structure instead of an additional
superstrate. Since the substrates lie between the center conductor and
the ground plane, as the frequency increases, they still have a
significant effect on the electric field lines of the structure,
increasing the potential bandwidth of the design. Also, since the even
and odd mode phase velocities tend to approach each other at very high
frequencies, it will be possible to achieve a very good match of the
even and odd mode phase velocities over an almost infinite bandwidth,

The necessity to control electromagnetic emissions, the desire to
cutoff higher order modes, as well as the need to reduce radiation
losses, often necessitate shielding the microstrip circuit. To be able
to accurately account for the effects of shielding on the transmission
lines requires the use of a rigorous analytical approach. Fortunately,
due to the general manner in which the generalized Green’s function was
derived, as well as the flexibility of the spectral domain appreoach, it
is as easy, if not easier, to compute the frequency dependent
parameters for shielded structures as for open ones. Figures 4.35

through 4.38 deal with the presence of an upper ground plane, or cover
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sheet, in a symmetric coupled microstrip structure with one substrate
and two superstrates. The same four dielectric materials are used and
the effective dielectric constant for the isolated line and the even
and odd modes of the coupled lines are computed as the height of the
upper ground plane, h01, is varied.

As hU1 gets smaller, then the structure becomes more like a
stripline, and so the effective dielectric constant for all three cases
approaches the relative dielectric constant of the substrate. On the
other hand, as hUl becomes large, then the structure becomes more like
an open microstrip, and the effective dielectric constants for the
isolated, even and odd modes approach approach the corresponding values
shown in Figs. 4.31 through 4.34 when huz = 0.3 mm. As with the
previous four structures, for generality, the frequency at which the
parameters are computed is 100 MHz.

The most noticeable characteristic in all four graphs is that the
effective dielectric constants vary over a large range of values as the
height is changed instead of monotonically decreasing from the
stripline value to the open microstrip value. ereff begins at the
maximum value when hUl is the smallest and begins to decrease in
magnitude until a minimum is reached when hu} is somewhere between 0.1
and 0.4 mm, depending on the dielectric material used. As h

Ul

continues increasing past this value, Sreff begins to increase as well,

approaching the open microstrip value when hUl is about 10 times the

substrate height, i.e. when hU1 e 10 mm.
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The manner in which er changes as hU1 varies can be understood

eff
by considering the field structure in shielded configuration. When hU1
is very small, then the paths of the field lines exist almost entirely
in the dielectric material with only very short distances in the air,

and so € is approximately equal to the € of the substrate. As the

eff
air gap increases in height, then the field lines that connect with the
cover layer pass through an air layer whose thickness is no longer
negligible and therefore has greater effect on the fields. Because the
dielectric constant of the air is lower than that of the substrate or
superstrate, Ereff begins to decrease in value. At some point,
however, the upper ground plane is sufficiently distant so that more of
the electric field lines go through the substrate to ground rather than
through the superstrates, bypassing the air gap and negating its
effects. This occurs even though the distance from the center
conductors to the upper ground plane is shorter than the distance to
the lower ground plane. But, because the substrate has a higher
dielectric constant than the equivalent combination of the upper two
layers, it attracts more of the field lines.

As the cover sheet moves farther away from the center conductors,
less field lines go from the center conductors through the air layer to

the cover sheet, thereby increasing e . Finally, when the cover

eff
sheet is far enough away, it attracts virtually no field lines and no
longer has any noticeable effect on the structure. When this happens,
creff for all three cases approach the corresponding values for the

open structure.
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The hUl value corresponding to the minimum creff value varies
slightly as the relative dielectric constant of the substrate and
superstrate changes. Additionally, while the minimum point is
approximately the same for each of the three cases, it varies slightly,
with the odd mode having the lowest hUl value and the even mode the
highest. For the RT/duroid substrate and superstrate combination, Fig.
4,35, the minima occur when hUl is about 0.43 mm., If the relative
dielectric constant of the material was decreased, it would be expected
that the minimum point would approach 0.7 mm, so that the total
superstrate height would be equal to the height of the substrate.

Also, the minimum points of each of the three cases would tend to
approach each other more closely with the even and odd mode ereff
approaching the isolated value, which in turn would be approaching
unity. In the limit as the relative dielectric constant approached
unity, the graphs would flatten completely and no distinct minimum
would exists.

As the dielectric constant increases, however, the minima points
occur at lower values of hul' and the locations for each of the three
cases increase in separation. For the beryllium oxide structure, Fig.
4.36, the minima occur for hUl near 0.21 mm, while for the alumina
substrate and superstrate, Fig. 4.37, they occur near 0.19 mm. When
gallium arsenide is used, Fig. 4.38, the minima occur near
hU1 = 0.16 mm, but differ noticeably for each case. The odd mode’s
minimum occurs at hUl = (0.155 mm while the even mode’s happens around

0.175 mm. As would be expected, the minimum for the isolated case ends

up between that of the even and the odd mode at hU] = 0.165 mm,
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In addition to the locations of the minima moving, increasing the
relative dielectric constant of the material also makes the change in
much greater as well. For the duroid structure, the introduction

Erefsf

of a 0.01 mm air gap decreases & by about 2 percent and the 0.1 mm

reff
gap decreases it by 12 percent. The decrease at the minimum point is
17 percent lower than the stripline value and 7 percent lower than the
open microstrip value. When the dielectric is changed to gallium
arsenide, the changes in € off become much more drastic. The 0.01 mm

and 0.1 mm air gaps decrease € by 14 and 40 percent, respectively.

reff

The minimum value of er is now 40 percent lower than the stripline

eff
value and 23 percent lower than the open microstrip case.

Thus if a stripline circuit were designed with similar dimensions
on gallium arsenide, but in production there were a 10 micron gap
between the upper ground plane and the dielectric material, there would
be and 8 percent increase in the wavelength and hence an equivalent
decrease in the electrical dimensions of the circuit, since
A x I/VE;;;;. If the air gap were 0.1 mm, however, the wavelength
would be increased by 23 percent. Changes in the electrical dimensions
of the circuit of this magnitude would certainly have an adverse effect
on the circuit performance. If, instead, the circuit had been designed
as an open structure without accounting for the shielding, then,
depending on the placement of the cover sheet, there could alsoc be
significant changes in the parameters of the lines. Clearly the
presence of a cover sheet, which is very common in production designs,

must be taken into account using a rigorous, full wave technique like

the SDA.
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As with the previous dual superstrate structures, it is possible
to adjust the dimensions to equalize the even and odd mode phase
velocities. For the four structures under consideration, a cover layer
height of slightly less than 2 mm makes the even and odd mode € off the
same. However, also like the two superstrate open structure, as the
frequency increases above the quasi-static region, the hu1 value
required to maintain the even/odd mode equalization decreases. As the
frequency increases, the electric field lines tend to gather along the
path with the highest capacitance. In order to maintain enough of the
field lines in the superstrates, the capacitance of the upper layers
must be increased, and so the cover sheet height must be reduced to
maintain the even/odd mode equalization. Due to the large change in
the required cover sheet height for frequencies above the quasi-static
region, this method of equalizing the even/odd mode phase velocities
can only be used either in the quasi-static region or for very
narrowband applications at frequencies beyond the quasi-static region.

It was shown previously that the presence of multiple substrates
in the microstrip structure causes significant deviations in € off from
the single layer value. However, the effect of the relative placement
of the substrates has not been dealt with yet. At very high
frequencies, the microstrip can be approximated by a parallel plate
capacitor, and so creff(m) is determined by the heights and relative
dielectric constants of the substrates, and not by the relative
locations of the substrates. At lower frequencies, however, the
position of a substrate layer relative to the other substrate layers

can have an important effect on the line parameters.
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To illustrate the effect of substrate placement on Creff' an open
symmetric coupled microstrip structure is used with two substrates,
alumina and RT/duroid 5880. The first configuration, designated
structure #1, places a 0.3 mm durocid layer on top of an alumina layer
of the same height. The next configuration, called structure #2,
switches the substrates, placing the alumina on top of the duroid,
again with both layers having the same height. The other dimensions
are the same for both structures and are listed in Fig. 4.39. The
effective dielectric constants for the two configurations are plotted
in Fig. 4.39 as a function of frequency for the isolated case and for
the even and odd modes of the coupled lines.

Structure #1 has a much lower ereff than structure #2, about 36
percent lower, indicating that structure #1 should be less dispersive
than #2. On the other hand, the separation in the even and odd mode
phase velocities is much greater in #1, 16 percent, compared with the
5.6 percent separation for structure #2. Thus structure #2 will have
much less distortion due to coupling than #1. Also while € off for the
odd mode is lower than the even mode in #1, switching the substrate
layers as in #2, results in the even mode ereff being much lower than
the odd mode.

Pulse distortion on these structures is shown in Figs. 4.40 and
4.41 for a Gaussian pulse with T = 30 ps at a distance of 250 mm. The
signal line response on structure #1 has been critically distorted and
has separated into the even and odd mode pulses. On the other hand,
the signal line response on structure #2, while greatly reduced in

magnitude, is not nearly as distorted as the response on #1 because of



8.0 -

h Te - < w Structure #1, isolated
] Ut] rUlf—ofe——ofe—a] = e Structure #1, even mode
- Structure #1, odd mode
I 7 T s —— Structure #2, isolated
} —-—-—-= Structure #2, even mode
1 M) G —-—-—- Structure #2, odd mode
6.0 o Structure #1: Bwi = 1O h, =
By = 9.7, B e, hL1 = 0.3mm, hL2 = 0.3mm
1 Structure #2: w = 0.6mm, s = 1.2mm s

ereff

80.0

Frequency in GHz
frequency for open symmetric coupled multilayer

Fig. 4.39. € oqy VS

microstrips on alumina and RT/duroid 5880 substrate.

82t



5.0

Signal line

= g

vt Cet1pe ™ e e

Magnitude of pulse

Sense line ,"\ h
Undistorted ; /7 %\ 12| “ri2
Isolated iy h
P Y erl.].
= 9.7, hm = 0.3mm
= 2.2, hL2 = 0.3mm
=y 1.3, hUl =
0.6mm, s = 1.2mm
T 7 )
1.40 1.50
““Time in nanoseconds
Fig. 4.40. Pulse distortion on multilayer coupled lines, 1 = 250mm,

T

30ps, structure #1.

621



5.0 4 ——— Signal line o hyy CrUt e epe T ote " o
| — Sense line £ s h
------------------ Undistorted P A r2| Fri2
o s Isolated i 5
: : h
o 4
n 4
3
Q. 2.5
s 4
o -
Q
P -
= J
=
c 0-0 Al T T
o]}
@ .
= ]
—2.5 - Time in nanoseconds
Fig. 4.41. Pulse distortion on multilayer coupled lines, 1 = 250mm,

T = 30ps, structure #2.

0€T



131

the smaller separation in the even and odd mode € off for this
configuration. The sense line responses for the two structures are
also markedly different. The most important difference between the two
responses is that structure #1 has a negative leading sense line
response, whereas structure #2 has a positive leading response. This
difference arises because the odd mode is faster than the even mode on
structure #1, while the even mode is the faster of the two on structure
#2. Therefore, changing the relative placement of the the substrate
layers has a significant effect on the characteristics of the
structure.

Using the generalized Green’s function in conjunction with the
spectral domain approach allowed the accurate analysis of complex
multilayer microstrip structures. Initially, it was shown that the
addition of even relatively thin substrate layers with different
dielectric constants resulted in very large changes in € off for the
isolated line, even mode, and odd mode. Then attention was turned to
the addition of superstrate layers, particularly with respect to the
use of additional superstrates to equalize the even and odd mode phase
velocities. While it was possible to match the even and odd modes in
the quasi-static region, outside of this region the match was either
very narrowband or required impracticably large superstrate heights.
Next a cover layer was introduced in the two superstrate structure and
it was shown that the addition of this shielding layer created a wide
variation in € off for each of the three cases. Finally, the effect of

changing the positions of the substrates was examined, showing that the

relative position of the substrates affects not only the magnitude of
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the isolated case, but also can cause the even mode Sreff to be lower
than the odd mode, something not possible with single substrate

structures.

4.3 Zero Coupling Structures

It was shown in the previous section that the dimensions of a
multiple superstrate structure could be adjusted to equalize the even
and odd mode phase velocities. Unfortunately this type of design has a
very narrow bandwidth and matches may not be practical at certain
frequencies. The bandwidth limitation arises because the field
structure that is responsible for the match lies in the superstrates
and, as frequency increases, most of the fields move into the substrate
layers. Thus if the even/odd mode matching conditions could be
obtained using the substrate layers, then it should be possible to
obtain a more broadband match.

In Fig. 4.39, the odd mode € was higher than the even mode

eff

Creff for structure #2. However, if the same structure were completely
filled with either of the two dielectric materials instead of a
combination of the two, then the odd mode creff would be less than the
even mode, as is the case with all single layer structures. Therefore
there must exist a combination of hL1 and hL2 which would equalize the
even and odd mode phase velocities. The existence of these even/odd
mode equalization structures, or zero coupling structures, is due to a
mechanism that is similar to the one that was found in the multiple

superstrate structures. In order for this match to exist, the

dielectric constant of the lower substrate must be less than that of
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the upper substrate. In addition, it will be shown that the difference
in the dielectric constants must surpass some value that depends in
some way on all of the dimensional parameters of the microstrip
structure. Thus even if €. is less than € s it may not be possible
to equalize the even and odd mode phase velocities.

To study the characteristics of the zero coupling structures, an
open symmetric coupled microstrip is used with two substrates below and
air above. The total substrate height of the structure, designated

h is held constant while the heights of the two layers are

total’

varied. When h _ is equal to zero, then h _ is equal to h and the
L1 L2 total

structure has a single substrate with a relative dielectric constant of

€ If h is increased until it is equal to h

. then h is
rL2 5 A total’ I

equal to zero and the structure once again has only a single substrate,
this time with a relative dielectric constant of € .-
In Fig. 4.42 the upper substrate is chosen to be beryllium oxide
and the lower substrate to be either air or RT/duroid. The effective
dielectric constants for the isolated, even mode, and odd mode are
plotted as hL1 varies from zero to htotal = 0.6 mm. When . is equal

to unity, the places where the even and odd modes have the same Ereff'

referred to as the zero coupling points, occur at h 2 0.1 mm and

L
hLl = 0.6 mm = htotal' The second zero coupling point occurs when
h =nh because this structure is a pure TEM line since the
L1 total

dielectric is homogeneous with a relative dielectric constant of unity.
This structure is just two conductors suspended in air above a ground
plane. Therefore, whenever the lower substrate is air, then one of the

ibl 1i i ill h = h .
possible zero coupling points wi be at - —
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When the lower substrate is changed to RT/duroid, then there is no
value of hLl that makes Creff the same for the even and odd modes.
However, if the dielectric constant of the lower substrate is reduced
slightly from 2.2 to 1.8, then zero coupling points will exist.
Although there is no geometry that allows the even/odd mode
equalization when By ™ 2.2, it is possible to significantly minimize
the difference in the modal creff and therefore drastically reduce the
effects of coupling distortion. A relatively good match in 8o and €.
is obtained when hLl is in between 0.32 and 0.42 mm.

The next two-substrate structure has a layer of gallium arsenide
on top of either an RT/duroid or a beryllium oxide lower substrate.
When the lower substrate is RT/duroid, there are two zero coupling
points, one near hLl = 0.14 mm and another near hLl = 0.54 mm. The
existence of the zero coupling points depends on having a configuration

where Cre is less than cro and since at each of the dimensional

€ is greater

i 1
boundaries, i.e. at h equal zero and h  equal h . ., €

than Cro' there must be at least two points where ere - R The other
possibility is that cre is greater than cro for all hLl except for one
point where they are equal. This is similar to quadratic equations
which always have two roots, although it is possible that the two roots
will have the same value.

As the relative dielectric constant of the lower substrate is
increased, the locations of the zero coupling points move closer
together. At some value of erLl the two points will have moved

directly on top of each other, giving only one physical zero coupling

structure. If € i is increased beyond this point, then the graphs for
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the even and the odd modes no longer cross and there are no zero
coupling points. This case is shown in Fig. 4.43 for By = 6.8. Thus
with the gallium arsenide and beryllium oxide combination it is not
possible to make cre equal to Cro nor is there any value of hLl that
significantly minimizes the differences between € e and €

Note that the condition on & per and - for the existence of the
zero coupling points is not dependent only on the difference between
the dielectric constants. A combination of € o ™ 1.8 and By ™ 6.8,
which has zero coupling points, has a smaller change in the relative
dielectric constants, Acr = 5.0, than the gallium arsenide and
beryllium oxide combination, which has a Aer of 5.4. Nor is their
existence dependent solely on the ratio of the relative dielectric
constants. A structure with erLl equal to unity and - equal to 1.7
has zero coupling points even though the ratio of the relative
dielectric constants, 1.7, is less than the gallium arsenide/beryllium
oxide ratio, which is 1.79.

One reason that there is not a simple requirement on the
dielectric constants of the substrates is that the existence of zero
coupling points, especially at lower frequencies, will depend on the
parameters of the superstrates as well as the substrates. For
simplicity only open microstrips are considered, but the presence of a
cover sheet or additional superstrates could also be treated in a
similar manner to find the zero coupling points, if they exist, for any
structure. Clearly the complexity of the microstrip boundary value

problem precludes the possibility of finding a simple formula that

determines if the even/odd mode equalization is possible. 1Indeed, none
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of the approximate formulas even predict the existence of these zero
coupling structures, let alone being able to determine the dimensional
requirements. Therefore the analysis of these types of structures must
be carried out with a rigorous solution of the boundary value problem.

Figures 4.42 and 4.43 show that zero coupling structures can exist
at a single frequency. The next step is to examine the frequency
dependence of the zero coupling points. In Figures 4.44 through 4.46,
the locations of the zero coupling points, i.e. the value of hLl that
makes ere = ero' are plotted versus frequency, with the frequency on a
logarithmic scale. As the operating frequency is increased, Bre and
Cro begin to approach the isolated line value and hence the difference
between them decreases. This occurs for all values of hLl since the
electrical separation of the conductors increases as frequency
increases.

As the frequency to continues increase, a point is reached where
it is not possible to uniquely determine a zero coupling point because
cre = Cro for all hLl values, Beyond this frequency, any value of hL1
will give a good match for Ere and Cro' The frequency at which this
occurs depends on how close the modal effective dielectric constants
need to be for the particular design. A larger tolerance in the
separation of the modal effective dielectric constants decreases this
frequency and a smaller tolerance increases it. Thus the graphs in
Figs. 4.44 through 4.46 are given only up to a certain frequency, after

which almost any value of hL1 results in less than a tenth of a percent

separation in € and €
re ro
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The first zero coupling structure, whose results are shown in Fig,
4.44, uses beryllium oxide as the upper substrate and air as the lower
substrate. RT/duroid could not be used for the lower substrate in this
case because, as shown in Fig. 4.42, there is no value of hLl which
makes cre equal to cro' Because the lower substrate is air, then one

of the possible solutions is hL1 = h and since this represents a

total’
pure TEM structure, the solution is constant for all frequencies.

While this solution is not generally practical in terms of actual
circuit design, the second root does represent a possible
configuration, with hL1 = 0.11 mm. The zero coupling point is
constant versus frequency in the quasi-static region which ends near 1
GHz. Above this frequency, the hLl value rises slightly, reaching a
maximum around 17 GHz, that is 10 percent higher than the low frequency
value. As the frequency increases further, the second root begins
decreasing slowly until the root location can no longer be determined
uniquely. Although there is a fairly rapid change in the root location
from 17 to 100 GHz, at these higher frequencies the separation between
ere and Cro is a relatively weak function of hL1' Thus in this region,
increasing the frequency decreases the importance of the location of
the root.

The next structure, shown in Fig. 4.45, uses alumina as the upper
substrate with either air or RT/duroid below. Increasing the relative
dielectric constant of the upper substrate from 6.8 to 9.7 decreases
the second zero coupling point for the air substrate from 0.11 to

0.068 mm. The required hLl achieves a maximum near 17 GHz, as before,

but with a 14 percent deviation from the low frequency location of the
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root. However, the change is only 1.6 percent of the total height of
the substrate compared with a 2 percent change when beryllium oxide was
the upper substrate. Thus increasing the relative dielectric constant
decreases the required height of the lower substrate and stabilizes its
value with respect to changes in frequency.

When the dielectric constant of the lower substrate is increased,
the required values move closer together and change more rapidly with
frequency outside the quasi-static region. In the low frequency
region, the first root decreases from 0.6 to 0.51 mm while the second
root increases from 0.068 to 0.2 mm. As & is increased further,

rLl

then the root locations would move closer and closer to each other

until they reach the same value. If € oy is increased past this point,
then the zero coupling points would no longer exist.

As the frequency is increased above the quasi-static region, then
the zero coupling points begin to change, with the first root
decreasing slightly and the second root increasing in value. The
minimum of the first occurs near 17 GHz and is a decrease of 3.4
percent of htotal while the second root reaches a maximum at 15 GHz

that is 5.7 percent of h Since the changes in the required hL1

total’
are relatively small, even with the duroid substrate, using the
substrates instead of the superstrates to egualize the modal phase
velocities gives very wideband results.

The final structure, shown in Fig. 4.46, replaces the alumina
layer with a layer of gallium arsenide and uses the same two materials

for the lower substrates. With the air as the lower substrate, the

quasi-static value for the roots are at 0.6 and 0.055 mm while the
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duroid lower substrate give values of 0.54 and 0.15 mm. Additionally,
the deviations in the zero coupling points versus frequency have been
reduced from the previous configuration. With air as the lower
substrate, the maximum change in hLl is 1.4 percent of htotal and with
the duroid substrate the first root varies by 1.4 percent and the
second by 3.8 percent. Again these very small deviations give this
configuration a very wide bandwidth.

Realistic circuit designs require many different center conductor
spacings, and so it is important to consider the effects that different
spacings have on the location of the zero coupling points. Figures
4.47 and 4.48 show the zero coupling points for two configurations with
RT/duroid as the lower substrate and either alumina or gallium arsenide
as the upper substrate. Both roots are computed for three different
center conductor spacings; 0.6, 1.2, and 1.5 mm.

As the spacing increases, there are two major effects on the zero
coupling points; 1) the frequency above which the roots cannot be
uniquely defined decreases and 2) the zero coupling points vary more
widely with frequency. As the physical spacing of the center
conductors increases, the frequency at which the electrical spacing is
sufficiently large to isolate the conductors decreases, causing the
first effect. The second effect, which might seriously reduce the
bandwidth of the design, is offset by the decreasing importance of the
root location with frequency in the regions where it is changing
rapidly. In addition, larger spacings have less separation between the

even and odd mode cr and so it becomes less critical to obtain and

eff’

exact match.
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Using alumina as the upper substrate, as shown in Fig. 4.47,
results in a larger change in hLl as both the spacing and the frequency
change as compared to using gallium arsenide as in Fig. 4.48. Changing
the center conductor spacing from 0.6 to 1.2 mm gives an 8 percent
decrease in the first root and an 11 percent increase in the second
with the alumina substrate, and a 5 percent decrease in the first root
and a 7 percent increase in the second root when the upper substrate is
gallium arsenide. Increasing the spacing on the alumina substrate to
1.5 mm gives 14 and 18 percent changes in the first and second roots,
respectively, compared with 8 and 11 percent changes for the gallium
arsenide substrate. The zero coupling points on the alumina substrate
also vary much more with frequency than those for the gallium arsenide.
For both upper substrates, data at the higher frequencies, i.e. around
80 to 100 GHz, are in the region where ere = sro for wide ranges of
hLl, and so the rapid changes on the roots in this region are not as
relevant.

The equalization of the even and odd mode phase velocities has
many single frequency advantages; for example it increases the
directivity and hence the isolation of microstrip couplers. However,
the ability to achieve a good wideband match of the modal phase
velocities also offers the possibility of eliminating almost completely
the distortion of pulses due to coupling. Since it is impossible to
get a perfect even/odd match at all frequencies, the frequency spectrum
of the pulse must be considered in order to determine which band of
frequencies is the most important in determining the hLl value. If the

pulse spectrum has no significant frequency components outside the
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quasi-static region, then the low frequency value of hLl could be used.
However, if the pulse spectrum is very wide, as is the case with the
pulses that have been considered so far, then a value of hLl must be
chosen that minimizes the difference between Ere and € , over the
bandwidth of interest. In general, this value of hLl will be somewhere
between the low frequency value and the minimum value, if the first
root is used, or the maximum value, if the second root is used.

To illustrate how the zero coupling points can be used to
eliminate distortion due to even/odd mode coupling, the single layer
open symmetric coupled microstrip on alumina substrate in Fig. 4.10 is
redesigned to lower the coupling between the lines. The center
conductor widths and spacing are retained and the total height of the
substrate is maintained as well, but a layer of duroid is added below
the alumina to equalized the even and odd mode phase velocities. This
example will use the second root, as shown in Fig. 4.45, although it
would be equally valid to use the first root. The low frequency value
of hL1 is 0.1991 mm and the maximum value, which is at 15 GHz, is
0.2334 ram. The Gaussian pulse has a half width, half maximum of 30
picoseconds, and at 15 GHz, the spectrum has fallen off to 13.5 percent
of the maximum value. Also, since the spectrum of the pulse falls off
so rapidly, equation (4.1), the lower frequencies are the most
important and frequencies higher than 15 GHz do not critically affect
the pulse. Using this information, hLl is chosen to be 0.22 mm.

Using the chosen dimensions, Creff is computed and is shown in
Fig. 4.49 as a function of frequency both as a preliminary to the

computation of pulse distortion as well as to check the validity of the
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matching process. 1In the quasi-static region as well as for
frequencies above 25 GHz, aro is greater than ere' which is a reversal
of the single layer situation, while from 5 to 25 GHz, o becomes
slightly larger than e .- This design achieves a very good match of

the even and odd mode er at the lower frequencies, with less than a

eff
one percent difference in the values up to 40 GHz. The separation
between ere and €5 is the largest in frequencies from 40 to 85 GHz and
reaches a maximum separation of less than 1.6 percent at 60 GHz. When
the frequency gets larger than 100 GHz, the separation between B and
Cro becomes negligible due to the increasing electrical separation of
the center conductors. Since neither the even nor the odd mode € off
is consistently larger than the other, the distortion of the pulses
will not appear the same as the previous cases, and it is not
immediately evident whether the leading sense line response will be
positive or negative. However, since the even mode is faster in the
quasi-static region, where the majority of the pulse spectrum lies, it
is probable that the leading response will be due mostly to even mode
components and therefore the sense line should have a positive leading
response.

In addition to reducing the separation of Cre and - the
addition of the substrate layer drastically changes the dispersive
characteristics of the lines. Comparing Fig. 4.49 with Figs. 4.9 and
4.10, shows that the new structure will be less dispersive than the
single layer alumina structure, but slightly more dispersive than the

configuration with the duroid substrate.
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Having computed the effective dielectric constant for the
frequency band of interest, the propagation of the pulse on the coupled
lines may be computed. Three different distances are used, 62.5, 125,
and 250 mm, for comparison with the previous pulse distortion results
for both the duroid and alumina substrates. The 62.5 mm distance used
in Fig. 4.50 corresponds to the graphs in Fig. 4.15 where the substrate
is a single layer of alumina. The 125 mm length used for Fig. 4.51 is
comparable to both Fig. 4.16, alumina substrate, and Fig. 4.11, the
duroid substrate. Finally, Fig. 4.52 with a distance of 250 mm,
corresponds to the results in Fig. 4.12 with a duroid substrate. The
isolated line response is not graphed in Figs. 4.50 through 4.52
because there is no visible difference between it and the signal line
response.

At 62.5 mm the signal line response is very similar to the
undistorted pulse, the only difference being that it is shifted
slightly with respect to it. The sense line response is negligible,
having a maximum amplitude of less than one percent of the undistorted
pulse. At this distance, the lines on the alumina substrate showed a
significant reduction in the amplitude of the signal line, about 40
percent, and had a sense line response that approached 50 percent of
the undistorted pulse.

As the pulse travels farther on the low coupling structure,
reaching 125 mm, dispersion distortion begins to affect the pulse,
while coupling distortion is unnoticeable. The signal line is still
unaffected by coupling, and the maximum sense line response has risen

to only 1.9 percent of the undistorted pulse. Contrasting this is the



5.0 m ——— Signal line ) T M B
| mm—— Sense line h
------------------ Undistorted L2| “rrL2
| Bra| &1
"
5 f g = 10 by = o
Q. 2.5 e = 8.7, hL2 = 0.38mm
= g oy = 2.2 hL1 = 0.22mm
o i = 0.6mm, s = 1.2mm
O
b -
3 -
gﬂ 0-0 T L] L] I--. I == L ] T Ll T 1 '
o - 0.35 0.45 0.65 0.85
= §
-2.5 - Time in nanoseconds
Fig. 4.50. Pulse distortion on low coupling structure, 1 = 62.5mm,

T = 30ps.

2st



5.0 4 ——— Signal line U1} “rUl je—ote——ote—a]
| Bana s Sense line i h
------------------ Undistorted L2| %rL2

) h
- -
n _
3
o, 2.5 —
- -
o -
m -
o
= .
x
G 0-0 . g Ll L] |
o]}
p= - 0.75 0.85 0.95 1.05
= ,

-25 - Time in nanoseconds

Fig. 4.51. Pulse distortion on low coupling structure, 1 = 125mm,

T = 30ps.

EST



50 4w ——— Signal line .- hy, 8.-U1|..f....|.i.;.l'_.;
| e Sense line / = h
------------------ Undistorted ; t2] “riz

0 i Byl 8o
R4 - 1.0, h e
~ Erur T 29 By T
0, 2.5 - €42 = 97 h = 0.38mm
- J Byg = 2.2, hL1 = 0.22mm
o _ w = 0.6mm, 8 = 1.2mm
) | ; ;
T .
= _
Eﬂ 0-0 T T f-'—-—-l"h | -—T--‘ | B S— I T ..:::_T.--—' T ? T T T T T l
e 1 1.85 1.75 \/ 1.85 1.95
p= 4

—-2.5 - Time in nanoseconds

Fig. 4.52. Pulse distortion on low coupling structure, 1 = 250mm,

T = 30ps.

PST



155

responses shown in Figs. 4.11 and 4.16, where the signal line response
on the alumina substrate had almost completely split into the even and
odd mode components and on the duroid substrate it had suffered a 20
percent degradation in amplitude.

At the final distance, 250 mm, dispersion distortion has
noticeably changed the signal line response, but coupling distortion
has been eliminated as a limiting factor for the structure. Even at
this distance, there is no visible difference between the graphs of the
signal line and the isolated case, indicating that coupling has not
affected the intended signal. The sense line shows a maximum response
that is just a little over four percent of the undistorted pulse, which
indicates that there is a negligible amount of crosstalk between the
lines. The previous results for the duroid substrate, shown in Fig.
4.12, indicated that coupling was by far the dominant mechanism,
producing a very large spurious response and seriously degrading the
signal line pulse.

Thus through the use of the zero coupling points, even/odd mode
coupling was essentially eliminated as a distortion mechanism on
microstrip lines even though they were in close proximity. Using the
correct combination of the two substrate materials enabled the design
of a structure that exhibited better isolation between the lines than
could be obtained by using either of the substrate materials alone. In
spite of the extreme distances traveled, crosstalk was held to
negligible levels and the intended signal suffered no noticeable

distortion due to coupling.



CHAPTER 5
CONCLUSIONS

Solving the microstrip boundary value problem in a rigorous manner
gave a simplified representation of multilayer coupled line structures
and enabled the accurate computation of the line parameters as well as
pulse propagation for these structures. First, a generalized Green's
function was presented as a simple recurrence relation, that is
applicable for microstrip structure with any number of superstrates or
substrates. Next the Fourier transform and the even/odd mode approach
were used to obtain the formulas necessary to analyze the transient
response on coupled transmission line, including the effects of
dispersion, losses and coupling. Numerical results were presented for
both single and multilayer structures, showing that a full wave
analysis in necessary for accurate results. Finally, a new method for
equalizing the even and odd mode phase velocities through the control
of the electrical characteristics of the substrates was presented.

The rigorous solution of the multilayer, multiconductor microstrip
boundary value problem with the spectral domain approach resulted in a

relatively simple formulation for the microstrip parameters. The

Yy Y

and TM® modes, allowing the problem to

derivation began by choosing TE
be solved separately for each mode, since the modes satisfy the

boundary conditions independently in the spectral domain. Next, the

SDA was used to obtain the Green’s function, initially for a simple



157

single layer shielded structure. To illustrate the use of the SDA, a
six-layer structure was considered and the derivation, resulted in a
simple recurrence relation for the Green’s function of multilayer
configurations. The recurrence relation allows the Green’s function to
be easily computed with a single subroutine for any arbitrary
multilayer structure, rather than requiring a different subroutine for
each possible configuration. Finally, the Green’s function was also
expressed in a form suitable for the calculation of the parameters of
slot line and coplanar waveguide type structures.

The even/odd mode analysis and the frequency domain approach were
used to derive the formulas for the propagation of finite time domain
signals on coupled transmission lines. Using the fregquency domain
approach simplified the transient analysis of the coupled line system,
allowing fast, accurate computation of the output waveforms. The
even/odd mode approach made it possible to split the symmetric
four-port system into two simpler two-port networks. Combining the
even/odd mode analysis with the frequency domain approach gave simple
expressions for the time domain response of lossy and dispersive
coupled transmission lines. These expressions clearly illustrated how
losses, coupling, and dispersion degrade the input signal and how
differences in the complex propagation constants for the even and odd
modes produce a spurious response on the sense line.

Numerical results for the frequency dependent effective dielectric
constant and pulse dispersion for a single layer symmetric coupled
microstrip were presented, for different substrate materials, center

conductor spacings, and distances. Coupling between the lines
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increased when the center conductor spacing was increased, the distance
increased, and/or the dielectric constant of the substrate increased.
Examining the distortion of pulses at different distances showed that
coupling distortion separates the input signal into even and odd mode
pulses as the distance gets very large. By studying the effects of
center conductor spacing, it was demonstrated that the conditions for
uncoupled operation of transmission lines depended not only on the
center conductor spacing or substrate height, but also on the substrate
materials, the distance over which the lines are coupled, as well as
the other dimensions of the structures.

The generalized Green’s function was used with the SDA to consider
the effects of multiple substrates and superstrates on the
characteristics of coupled lines. Adding even a thin lower substrate
layer with a different dielectric constant caused significant changes
in the L of the isolated case as well as for the even and odd
modes. Placing a superstrate layer with the same dielectric constant
as the substrate on top of the center conductor interface also had an
important effect on the microstrip parameters. By adjusting the height
of this superstrate layer, it was possible to equalize the even/odd
phase velocities for the structure, although the equalization was good
only in the quasi-static region or over a very narrow band of
frequencies. When a cover sheet was introduced to the two superstrate
structure, creff changed over a wide range of values as the height of
the cover layer was varied. Finally, it was shown that the relative

positions of the substrate layers changes not only the value of € off

for the isolated case, but can cause the even and odd mode Ereff to
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switch in relation to each other.

A new method of equalizing the even and odd mode phase velocities
was presented that could obtain a match over a very wide band of
frequencies. To overcome the difficulties encountered from using the
superstrate equalization scheme, the modal phase velocities were
equalized by choosing substrates with the appropriate dimensions and
materials. Since for all frequencies most of the fields lie in the
substrate layers, this matching procedure gives good results not only
in the quasi-static region, but also for frequencies well above it.
The appropriate substrate heights for even/odd mode equalization,
called zero coupling points, were presented as functions of frequency
and center conductor spacing for different substrate materials. Using
these zero coupling points, a structure was designed that exhibited
better isolation between the adjacent lines than could be obtained by
using either of the substrate materials alone. When pulse distortion
was considered for this structure, it was shown that the crosstalk was
almost non-existent and the input signal had suffered no distortion due

to coupling.



CHAPTER 6
RECOMMENDATIONS

Future research in this area would be concerned with increasing
the speed and accuracy of the computations and considering both losses
and discontinuities in a rigorous manner. To increase the accuracy of
the Spectral Domain Approach, more current expansion functions should
be used. It is very important to choose ’good’ expansion functions
since a poor choice will necessitate a very large matrix which may not
even converge. Since the SDA is used in a very general manner, it is
possible to include the effects of lossy dielectrics by using a complex
dielectric constant. This substitution would make the Green’s function
complex, resulting in two equations (the real and imaginary parts) to
be solved for two unknowns, az and Bz. The results from this research
could be used to verify approximate formulas used for dielectric losses
and to specify the range of validity of the approximations.

It was shown in Chapter 3 that differences in the even and odd
mode attenuation constants cause coupling and distortion on coupled
lines. Currently there are no approximate formulas or results from
rigorous solutions available for the modal attenuation constants. The
attenuation constants for the even and odd modes could be determined by
using the SDA for dielectric losses and by modifying approximate
formulations for the conductor losses. Once the modal attenuation

constants have been determined as a function of frequency, pulse
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distortion on coupled lines due to attenuation distortion and
attenuation coupling could be investigated.

To accurately model complete MMIC circuits, the effects of
discontinuities must be considered in a rigorous manner. The SDA can
be used to consider these problems since the derivation transformed in
both the z and x directions. By using the appropriate current
expansion functions, which now must be functions of Bz as well as Bx,
it will be possible to characterize discontinuities in the z direction
of the structure. Discontinuities that might be considered include:
abrupt changes in the center conductor width, gaps in the center
conductor, bends, crossing lines, etc. These results could then be

applied to consider the transient response of very complex circuits.
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GREEN’S FUNCTION FOR GENERALIZED PLANAR STRUCTURE

Efficient solution of printed circuit transmission lines with the
Spectral Domain Approach (SDA) requires a closed form expression for
the modal input impedances, Z™ and 2™. The solution begins by
solving the boundary value problem for a six layer structure, first for
the TM' mode and then for the TEY mode. This derivation shows a
pattern that leads to the recurrence relation presented in section
2.3.8.

since TEY and TM' modes are being used, the boundary conditions
can be enforced separately for each mode. In order to simplify the
notation, a different geometry is used for the derivation, shown in
figure A.1. The structure is surrounded perfect electric conductors on
all four sides, i.e. at x = a, x = -a, y = hl, y = h1+h2+h3+h4+h5+h6.
Non-shielded structures can be considered by letting a — ®, h1 — ®,
and/or h6 — ® as is appropriate for the structure. For clarity, only
one center conductor is shown, but any finite number could be
considered. Beginning with the ™' mode first, the appropriate vector
potentials, K&i(ﬁx,y,ﬁz), for each of the six regions are chosen as
follows:

REGION 1: (0 =y = hl)

Ayl=Bl(ﬁx,Bz)cosh(ay1y) (A.la)
REGION 2: (h =y =d, d = h +h)
Ay2=BZA(BX,BZ)cosh[ay2(dz-y)]+BZB(5X,BZ)51nh[ay2(dz-y)] (A.1Db)
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REGION 3: (d_ =y =d_, d_ = h_+h_+h))
_ 2 3 3 183

A =B3A(Bxfﬁz)cosh[ay3(d3-y)]+B3B(Bxfﬁz)81nh[ay3(d3-y)]

y3

REGION 4: =y = d = h +h +h +h
REGION %3 (d3 Y dq' 4 1 2 3 ﬂ

y4é

REGION 5: (d =y s=sd , d = h_+h +h _+h +h )
—_— 4 1 2 3 4 5

5 5

A =B5A(BX'BZ)COSh[ays(y—dq)]+BSB(Bx'Bz)Sinh[ays(y_dq)]

Y5

: sy = = h_+h_+h_+h +h +
REGION 6 (d5 A ds, d hl h2 h3 h4 h5 hs)

6

AYG=BG(BX,Bz)cosh[my6(dﬁ-y)]

A =B4A(Bx,Bz)cosh[ay4(y-d3)]+BqB(Bx,Bz)51nh[ay4(y-da)l

(A.1le)

(A.1d)

(A.le)

(A.1f)

Where the BN(BX,BZ)’S are unknown functions of the transform

variables, which are to be determined from the boundary conditions.

They are abbreviated as EN throughout.

. are chosen based on;

1) the tangential E fields vanishing at y = 0 (at ground plane) and 2)

the tangential E fields vanishing at y

the structure doesn’t have a cover sheet,

(at the cover sheet). If

it is an open structure,

then d6 — w because h6 —— o and the fields at infinity must also

vanish due to the outward radiation condition.

Because the TMy mode

allows either the x or z directed fields to be used to enforce the

boundary conditions, only the x directed electric and magnetic fields

will be given. The six vector potentials in equations

are

used with equations (2.12a-f) to calculate the fields in each region.

REGION 1:
B o
1 ;
ETM = - B xy sinh (e _y)
x1 1 Wy € y1
11
el r B BZ cosh (a )
b5 35 M Tt
2 2 2 2
= + = =
B Bx Bz ayl i “1 1

(A.2a)

(A.2b)

(A.3)
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REGION 2:

REGION 3:

™
E
x3

REGION 4:

E
x4

™
E
z4

™™ _

REGION 5:

™™
E
X5

REGION 6:

™
E
X6

H
X6

™ _

Pys B sinh[a _(d.-y)]+B_ cosh[o _(d_-y)]
B WL e, g™ 2 2\%7¥
Bz '
=9 E; BZAcosh[OLyz(dz—y)]+B2 sinh[a 2(d2—y)]]
2 2 2 2
e ® Pp = Wy = RlE,
Bx“Ya
- wp3£3[E3A51nh[ay3(d3-y)]+B3Bcosh[ay3(d3-y)]]
Bz
= 4 = - inh o
| ™ [Bncosh[aya(d3 y)]+B3B51n [ay3( 5 y)]]
2 2 2
B * By~ % T U S,
IBxayd d
= - i i =t h o
wpqeq[BqASlnh[ayq<y d3)] B4Bcos [myq(y 3)]]
= - P2%ys B sinh[a (y-d_)]+B_cosh[e (y-d_)]
wp, e, | 4n vy 3 4B v 3
BZ '
= 3 ﬁ: [Bchosh[ayq(y-d3)]+54331nh[ay4(y—da)]]
2 2 ¥ 2
Bx * Bz - aya Nk “484
= - BX Yolg sinh[a (y-d )]1+B_cosh[e (y-d )]
wh e | 5A Y5 4 5B V5 4
BZ '
= H; [BSAcosh[ays(y—d4)]+BSBSlnh[ay5(Y-dq)]]
2 2 ¥ @
Bx * Bz - “ys e “585
B «
= X ye6 . i
= B, ome, 51nhfay6(d6 y) 1
BZ
- § B ™ cosh[ays(ds-y)]

6

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

4a)

4b)

5)

6a)

6b)

.7)

.8a)

. 8b)

.8¢c)

w9

10a)

10b)

11)

12a)

12b)
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2 2 2 2 2
= + - = > A.
Bs Bx Bz “ys W e (A.13)

Since the SDA requires both the x and z directed electric fields

. T™ TM™ .
at the center conductor interface, both Ex4 and Ezq are included. Note
: TM ™ ; g

that using Ex3 and Ez3 could have been used instead of the electric
fields in region 4 because the center conductors are assumed to be
infinitely thin.

Now that the fields have been determined, the ten independent
boundary conditions (two have already been applied) can be used to

eliminate the BN's. First the tangential fields are matched at the

first dielectric interface from the bottom.

T™ ™ T™ T™
1) = or E = E
=h =h = 2 |y=h
X1 |y i x2 |y i zl|y h1 z2 |y i
B « B «
-B, = ¥sinh(a h)=—X2 yz[s sinh(«__h_)+B_ cosh(a__h )] (A.14)
1 WH_€ y1 1 wu_e_ | 2a y2 2’ 2B y2 2
11 2 2
e €e1%aT
B =-sech(a h )——=* ¥2|/p sinh(a h )+B_ cosh(a _h )] (A.15)
1L yl 1 U o 2A yz 2 2B y2 2
2 r2 yl*
TM ™ T™ T™
H = H H =H
2) %1 |y=h X2 y=hl or z1 y=h1 z2 y=h1
Bz Bzr
jB. — cosh(a _h ) = j—|B_ cosh(a _h_)+B_ sinh(ax _h_) (A.16)
1K vyl 1 | 2a y2 2" 2B y2 2

Substituting in for B1 using (A.15)

crlcoth(a 1h1) o
y —-—[B sinh(¢ h )+B_cosh(a _h )] =
2A y2 2’ 2B y2 2

o €
vl r2
= h = B i A.17
BzAcosh(ay2 2) 2B51nh(ay2h2) ! )
crlcoth(aylhl) er2 . erzcoth(ay2h2) B
o 2A o 2B o
yl v2 y2
er2 crzcoth(a ?hz) 5
5 e ye - B (e /a ) (A.18)
o 2A o 2B X2 y2

y2 y2



£ € coth(ae h ) € coth(x h)
rl vyl 1 2 y2 2

r2
—_— + =
2 o o o
y2 y1 y2
2
e coth(ae _h )||e _coth{(a h ) (3
5 e vyl 1 r2 y2 2 £ r?
2B o o o
¥yl yz y2

In a similar manner, the tangential fields at the first dielectric

interface from the top are now matched.

TM TM T™ T™
3) E = _, or E e = »
X5 y—d5 X6 y-d5 z5 y—d5 zZ6 y—d5
B «
X ¥ inh(e h) =
6 WL € Y6 6
6 6
Bx“ 5
- X ¥ g sinh(e_ _h )+B_cosh(x _h )
wu585 5A Y5 8 5B Y5 5
“rsersm 5
B =-sech(x _h )—______X_[B sinh(¢ h )+B_ cosh(a h )]
6 v6 6 U £ O 5a y5 5 5B y5 5
r5 r5 yé
TM T™ T™ TM
4) H = e er H = "y
x5 y—d5 X6 y—d5 z5 y—d5 z6 |y d5
BZ BZ
B — cosh(e h ) = J—|B cosh(e¢ h )+B_sinh(a h )
6 M, y6 6 T 5A y5'5 5B y5 5

Substituting in for BG using (A.21)

crscoth(a shs) o
y —X—[B sinh(a h )+B_ cosh(x h )] -
5A y5 5' 5B v5 5

o €
Y6 rs
- B cosh(ae h ) - B sinh(x h )
5A y5 5 5B ¥5 5
€ coth(ax h) £ € coth(oe h )
ré yé6 6 rs rs Y55
B, — + B =
o 5A o 5B o
yeé y5 y5
Brs erscoth(a 5h5) 2
- — B 4 - B (g Jo )
o 5A o 5B ¥5° Y5
ys Ve
€ € coth(e h) € coth(ax h )
5| xe y6 6 " rs ¥5 b _
5A o o o
ys Y6 ys
2
€ coth(a h )||e coth(a h ) €
-B Iré y6 6 rs Y5 5 + £S5
5B o o o

yé y5 Y5

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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To simplify the notation, let

crlcoth(aylhl)

TM
s1 o (A.26a)
y1
- erzcoth(a th)
= Y (A.26b)
s2 o
y2
- cr3coth(a 3h3)
- Y (A.26c)
53 o
y3
5 crqcoth(m 4h4)
_ y (A.264)
s4 o
v
il cr5coth(a 5hs)
- y (A.26e)
s5 o
V5
_— crﬁcoth(a Ghs)
- y (A.26F)
56 o
V6
and
T™ __TM 2
™ Ysl Y52+(cr2/a ?
Y, = > -~ Y (A.27a)
Y + ¥
s1 52
8
i Yop TaatIE 10
Y= 4 (A.27Db)
5 T™ T™
Y
s6 s5

Using these expressions in equations (A.19) and (A.25) and solving them

ivel
for B2A and B5A respectively,

T™ _TM 2
& 2 Ysl Y52+(er2/m 2) « 2 _TM
Bza - Bza EX‘ T™ TM ! = - BZB EXﬂ Yz (A 282)
r2 ¥ + X r2
31 52
T™ _TM 2
“ S Yss Y55+(8r5/a 5) . 5 ™™
BSA - BSB ey ™ TM . T BSB ey Ys bl BT
r5 Y + X rs5
56 55

Proceeding to the next dielectric interface up from the 1-2

interface, the fields at the 2-3 interface are forced to be continuous.

™ T™ ™ TM™
5) E _ = _ or E _ =E _
X2 y—d2 x3 |y d2 z3 |y d2 z3 |y d2
B, o B,
X Y2 _ X ¥ p sinh(a _h_ )+B. cosh(o _h_) (A.29)
2B Wp, €, WP, e | 3A y3 3 3B y3 3



O(. 2 “ 3“1‘2
B - L. —X————[B sinh(e¢ _h_)+B_cosh(a _h )]
2B € € [ 3A y3 3 3B y3 3
r2 r3' r3
TM ™ TM TM™
6) H . =H . ©or B . =H _
X2 y—d2 x3 y-—d2 z2 y—d2 z3 y—d2
Bz IBz
j B, — =3 —|B _cosh(x _h_)+B_ sinh(a _h_)
2A “2 p3 3a y3 3 3B y3 3
p'172 y
B = ——|B_ cosh(o¢ h )+B_ sinh(a _h_)
an | 3a v3 3 3B v3 3

Substituting in for B2A using (A.28a)

« M
) 2
T MR <L —f—[B cosh(x _h_)+B__sinh(a _h )]
2B E 2 T 3A y3 3’ 3B y3 3
xr2 r3
%o M, ru] ™t
B Y%= - | cosh(a h )+B_sinh(a h )||Y
2B Crz ur3 3A y3 3 3B y3 3 2

Equating (A.34) and (A.30)

n
I B le sinhie kK ,)#B, cosh(a h)| =
3a v3 3B

33
€ ratys y
By, ru] 7t
- ———[B cosh(e¢ h )+B_ sinh(a _h )][Y ]
m 3n y3'3 3B y3 3 2
r3
Mul i
ultiplying both sides by [Y cr3ur3]/[ayapr251nh(ay3h3)]
>y eracoth(a 3h3) €
[B +B, jcoth(« .h )][ = - b4 . =
3a 3B 2 3a o 3B «
y3 Y
- Er coth(a h ) TM
B _|Y + coth(e h )+e /« ]
2 y3 3 r3’ Ty3

Using (A.26c) and factoring cr3/ocy3 out of the left hand side,

™ _TM 2
& Y ¥ +tie  fa )
- o s y3 2 s3 r3 y3
3A 3B € ™ ™™
r3 Y ol
2 s3

Since this expression is very similar to (A.27a), let

T™ TM™ 2
¥ Y +H{e o
2 s3 ( r3/ y3)

3 ™™ TM
Y 4 Y
2 s3

(A.

(A.

(A.

(A.

(A.

(A.

(A.

30)

31)

32)

: 33)

34)

«35)

36)

»37)

38)

39)

17§



176
Then (A.38) simplifies to;
(A.40)

Again in a very similar manner, the tangential fields at the 4-5

dielectric interface are equated.

™ ™ T™ ™
L Exs y=d B Ex4 y=d4 OF s y=d4 © Tz y=dq
B a B «
S X, & YQ[B sinh(x h )+B cosh(a h )] (A.41)
5B WU _E we £ | 4a ya a4 4B va 4
575 4 1
s %oaMes
X = Y% T fp sinh(e h )+B cosh(a h ) (A.42)
SB € _, T 4n va 4 4B va 4
™ ™ ™ ™
H = H = H
Sl x5 |y=d X4 |y=d 8= st y=d z4 [y=d
4 4 4 4
BZ BZ
J BSA E; & E:[BGACOSh(ay4h4)+B4BSlnh(ay4h4)] (A.43)
Mes
= —|B cosh(a¢ h )+B sinh(a h ) (A.44)
5A M 4A yv4 4 4B ya 4
r4
Substituting in for BSA using (A.28b)
& 5 TM “rs
=B Sy = -_-[B cosh(a h )+B sinh(a h )] (A.45)
5B € 5 M 4A va 4 4B yva 4
r5 r4
%ys Hes ™]
B X2 = - X|B cosh(e h )+B sinh(a h ) ||y (A.46)
5B Crs “rd 4A vi4 4 4B yva 4 5

Equating (A.42) and (A.46)

m
EXEEEE[Bquinh(ay4h4)+Bchosh(athq)] -
r4 r4
Hs o
- —|B cosh(e¢ h )+B sinh(a¢ h )||Y (A.47)
“rq[ aa ya 4 4B ya 4 ][ 5 ]

! ! : ™ .
Multiplying both sides by [YS cr4“r4]/[ayqursslnh(athq)]

crqcoth(a 4hq) cr4
= -|s, a7 S (A.48)
47 o 4B o
Y4 yA

[B +B Bcoth(a h )][

TM
5
i cr coth(a h ) TM
B Y + coth{(aa h )+e /«a ] (A.49)
5 ya 4 ra ya

aa| 5



Using (A.26d) and factoring er4/ayq out of the left hand side,

T™ _TM
%4 Y5 qu+(cr4/a 4)
Bqn - qu ey T™ TM . (3.50)
rd X + Y
5 s4

Again this expression is very similar to (A.27a), so let

™ _ TM 2
™™ Y5 Y34+(er4/a 4)
Y4 - T™ TM - .24
Y + Y
5 54

Then (A.50) simplifies to;

o
B w=-p ¥0 X (A.52)
4A 1B 4 er

Finally, the fields at the center conductor interface are matched.
Initially, the electric fields at the interface are simply set equal to
each other. The condition that the fields are zero over each of the
center conductors is applied implicitly through the current or electric

field expansion functions when Galerkins method is used in the final

step.
TM T™ T™ ™
9) _ =E _ or E _ = E 3
%3 y—d3 x4 y—d3 z3 y—d3 z4 y—d3
B a B o
X ¥ cosn(0) = - B, — Y coshil) (A.53)
3B WU_E 4B WU E
3 3 47 g
o £ M
B3B T Bqa EXiEEE_EE fE=bl)
y3 réura

Using this relation in (A.40)

a K
3
B w YTM yi r

3A 4B 3 €
r4“r4

(A.55)

Finally, the discontinuity of the magnetic fields due to the

current densities on the center conductor interface is used.
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™ ™ ™
1 -_— g
o Hx3 y=d qu y=d Jz
3 3
B B
j 2 B cosh(0) - § -2 B _cosh(0) = J " (A.56)
B 3A [THRF z
3 q
Using (A.52) and (A.55)
%y v Fya e o
B ¥y Ayp ¥ ey g (A.57)
4B "3 g 4B 4 B 2
r4 r4 z
u e
. M "4 xq 1
B4B = -3 J B _ (A.58)

zmy4 YTM+YTM

3 74

To verify that the ™Y mode satisfies the boundary conditions in
the spectral domain, it is neccesary to show that using the z directed
magnetic fields at the interface gives the same result as using the x

directed fields.

™ ™ ™
H - H = =J
z3 y—d3 z4 y—d3 X
B B
-4 = B _cosh(0) + § =B cosh(0) = -3 " (A.59)
M, 3 T x
Using (A.52) and (A.55)
v %ya v %ya Ky 1w
B ¥t EDap B el =l o (A.60)
4B 3 € 4B "4 £ B X
r4 rd X
TR >
B4B = =) J;M Bqar4 TMl ™ ths EL)
Zys ¥ FY
3 74
Equation (A.61) is equivalent to (A.58) if
™ ™
Iy /,8x =J, /Bz (A.62)
or
™ ™
BZJX = BxJz (A.63)

Y

which was shown to be true for the TM' case in Section 2.3.2. Thus the

Y

TM" mode does satisfy the boundary conditions in the spectral domain
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LS

and can be used independently to solve the boundary value problem. To

complete the TM' solution, substitute (A.58) into (A.S52)
“ YTH
2 ™ 4 4
ST L e P N (A.64)

z YTM+YTM
3 q
Using (A.58) and (A.64) for B4B and Bqa' substituting back into
the equations for the electric field in region 4, equations (A.8a-b),

and setting y = da, the fields at the center conductor interface are;

™ Jz Bx ™
E =4 — =3 (A.65Db)
x4 we fB
0 "z
T™
E o= §2 g™ (A.65a)
z4 we
0
where
™ ™ _1™] "}
Z = [Yq +Y3 ] (A.66)

™ ™ i
.o and Yq can be thought of as the modal admittances seen by the

3

current densities looking outward in each direction from the center

conductor interface. Thus ZTM is the parallel combination of these

admittances.

Y ¥

Having completed the solution for the TM" mode, the TE® modal

configuration is considered. The vector potentials for this mode,
Fy'(Bx’y'B ), are chosen as follows for each of the six regions:
!

z
REGION 1: 0 =y = h1

Fy1=A1(Bx,Bz)51nh(ay1y) (A.67a)
REGION 2: h =y =d, d, = h +h
F =R, (BB )coshla  (d -y))+A, (B B )sinhlx  (d,-y)) (A.67b)

REGION 3: =y = = h +h +h
BESTRN 4% dz y d3' da 1 2 3

Fy1=A3A(Bx'Bz)COSh[ay3(d3—y)]+A3B(Bx'sz)31nh[ay3(d3_y)] (A.67c)



: <y = = h_+h +h_+
REGION 4: d_ <y =d , d (thoth +h

Fy1=A4A‘Bx'Bz’°°5h[“yq(y_ds)]+A43(Bx'ﬁz’51“h[“y4(Y'ds’] (A.67d)
REGION 5: d4 x = d5, dS = h1+h2+h3+h4+h5
Fy1=A5A(Bx'Bz)c°Sh[“y5(y_dq)]+A53(Bx'Bz)51nh[ay5(y-d4)] (A.67e)

REGION 6: d =y =d , d = h_+h +h_+h +h _+h
—_— 5 6 6 172734 8 @
= i 2 A,

Fyl Ae(Bx'Bz’Slnh[“ye(ds v)] (A.67f)

Where the AN(BX'BZ)’S are unknown functions of the transform
variables, which are to be determined from the boundary conditions.
They are abbreviated as AN throughout. FYN'S are chosen based on 1)
the tangential E fields vanishing at y = 0 and 2) the tangential E
fields vanishing at y = ds‘ Again, only the x directed fields are used

y mode. The fields in each region

because of the independence of the TE
are determined using the six vector potentials (A.67a-f) along with

equations (2.38a-f).

REGION 1:
B
TE 7 z .,
s, = =4 Al EI s;nh(ayly) (A.68a)
TE Bxa 1
A Y2 cosh(a _y) (A.68b)
x1 1 wh e yi
2 2 2 2 2
Bl = Bx + Bz - ayl = W “181 (A.69)
REGION 2:
P o =3 ﬁf A hio (d_-y)]+A_ sinh[e _(d_-y)] (A.70a)
x2 J £, 22 9% y2 2 ¥ 28>t ye o 2 ¥ e R
TE Bx“yz
sz = wpzaz[A2A31nh[ay2(dz-y)]+A2Bcosh[ay2(dz-y)]] (A.70b)
2 2 2 2 2
Bz = Bx + Bz - ay2 = W u282 (A.71)
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REGION 3:
ETE = - &. A cosh[a (d_-y)]+A_sinh[a _(d_-y)]
x3 & €, L3 e 3B y3' o3
B o
TE X y3 '
= Ll + -
x3 wu383[A3nsmh[ay3(d3 R e T A y)]]
2 2 2 2 2
= + i =
B, =B, * B, -, =oue
REGION 4:
e o Bz A cosh[a (y-d )]+A sinhl[a (y-d_ )]
x4 T, [ ' il ap® Ty YT
TE = - B_x A coshla (y-d_)]+A sinh[«a (y-d_)]
z4 . N 4% y4 4 4B ¥4 ol
TE Bxay4
Lk = 5 84[A“s:.nh[txy4(Y—d3)1+A4BCOSh[Oqu(Y‘da)]]
2 2 2 2 2
B, =B, ¥ 8, ~ % T Y BB
REGION 5:
ETE = =i B_ A cosh[ee (y-d )]+A sinh[a (y-d )]
x5 4 £, e Y5 e SB ¥ Y%
TE 'BXOLYS
S n ] i + -_—
Hxs wpscs[A5A51nh[ay5(y dq)] ASBcosh[ays(y dq)]]
2 2 2 2 2
BS = Bx ¥ Bz B ays i [1585
REGION 6:
B
TE : 2 i
E =138, q 51nh[0cy6(d6 y)]
B «
E 6
R = Y coshlo (d_-y)]
%6 6 WK E y6 6
? 2 2 2 2
By = By + By - agg = oue

(A.

(A.

(A.

(A,

(A.

(A,

(A.

(A.

(A.

(A

(A.

(A.

72a)

72b)

73)

74a)

74Db)

74c)

75)

.76a)

76b)

77)

.78a)

78b)

79)

Now the boundary conditions are applied to eliminate the unknown

constants, beginning with the continuity of the tangential fields at

the first dielectric interface above the ground plane.
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2)

3)

E

TE . JTE i ETE _ _TE
x1 y=h1 x2 y=h1 zl y=h1 z2 y=h1
BZ BZ
- jJA. —sinh(a¢ _h ) = -j —|A__cosh(a _h )+A_ sinh(a _h_) (A.80)
1 el ¥ a 82 2A y2 2 2B y2 2
er1
= PR s + 1 .
Al sech(aylhl)erz[AZAcosh(ay2h2) A2331nh(ay2h2)] (A.81)
TE o TE o HTE — TE
x1 y=h1 X2 y=h1 zl y=hl z2 y=hl
B «
-a X Y¥osh(a _h) =
1 WU, € yi 1
i |
B «
X y2 :
A sinh(¢ h ) + A cosh(x h_ ) (A.82)
mpzez 2A y2 2 2B y2 2
Substituting in for Al using (2.3-81)
o 1coth(oc 1hl)
. A4 [A cosh(e h ) + A_sinh(a _h )] =
M 2A y2 2 2B y2 2
b o |
% 2
Y2|pn_ sinh(e _h ) - A cosh(a h) (A.83)
“rz 2h y2 2 2B y2 2
o coth(e h)) o coth(a h ) o
yi vi 1 2 y2 2 y2
Bon A m -
“rl urZ r2
% % o 2coth(a 2h2)
e e - Bon = . B84
¥ “r2 “rz
o a coth(x h_) o« coth(a h )
v2| y1 v1 1 y2 y2 2 |
= urZ “rl “J:Z 5
o coth(a h_ )||e coth(e _h) o
yl yi1 y2 y2 2 y2
By —— (A.85)
'utl “r2 “r2
Now the continuity of the tangential fields at the first
dielectric interface below the cover sheet is enforced.
TE TE TE TE
= E or E =
X5 y~-d5 X6 ywd5 z5 ygd5 z6 y—d5
BZ
- jJA —sinh(a h ) =
6 € Y6 6
BZ
s Z 4 ;
3 = [ASACOSh(aYShS) A5351nh(ay5h5)] (A.86)

5
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€
re
= e -+ 1 "
A6 SQCh(ayshG)c [ASAcosh((xyshs) A5351nh(ay5h5)] (A.87)
TE TE TE TE
4) H _ H _ or _ = _
x5 y—d5 X6 y-ds z5 |y d5 z6 |y d5
B o
6
= —XLCOSh (a h ) =
6 W E 6
6 6
B o
X y5 .
A sinh(e¢ h ) + A cosh(a h ) (A.88)
wuscs 5A y5 5 5B y5 5

Substituting in for AG using (A.87)

o Gcoth(a shs)
_— Y [A cosh(a h )+A sinh(a _h )] =
u 5A y5 5 5B ¥5 5
ré
ocy5
- inh h - A h .
”r5[A5ASln (ocys 5‘) Slacc>.3 (ocy5h5)] (A.B89)
oo coth(ae h ) o coth(ae h) o
y6 VE 6 y5 ¥5 5 v5
Rea o | T
“rG prs ”rs
o « coth(a h )
5 55
T 5""“:.—5)2 . - Bsn = - (A.30)
Y “rs “rs
. ocy5 ayecoth(ayshs) i ocyscoth(ocyshs) .
38 “rs Mrs “'rs 5
o coth(a h )||a coth(a h ) o
_ ASA v6 y6 6 ¥5 y5 8 i _y_s (A.91)
”rG urs “rs
Just as in the TMy case, the notation is simplified by letting
5 o 1coth(oc lhl}
- Y b4 (A.92a)
”rl
- o 2coth(ot 2h2)
o y (A.92Db)
52 K
r2
- o 3c:oth (o 3h3)
Y - Y Y (A.92¢)
Hys
- o 4coth(oc qhq)
P . ¥ Yy (A.92d)
54 u
ra
. o E‘c:oth(ac shs)
Yy = X y (A.92e)
35 n
b il
- o 6cotlra(c:wc shs)
y? o= X 4 (A.92f)
s6 n

re



and
e _TB 2
X Y +(a _/p )
TE 81 82 y2 “x2
Yz - TE TE 2
b + X
s1 52
TE _,TE 2
TE Yss Y55+(a sfﬂrs)
Y5 = TE YTE &
&
S6 S5

Using these expressions in equations (A.85) and (A.91) and solving

for A_ and A__ respectively;
2A 5A

TE _TE 2
By oy Ysz+(“y2/“r2) Hro e
Raa =™~ By @ TE TE 28 & Y2 (A
y2 Y + Y y2
s1 82
TE _TE 2
Ho_Y " Y +(ax /p ) [z
5 5 5 _TE
BAoa = 7 Bsy ar = :Z yiz - 5B ar I b
5 Y Y 5
* s6 s5 ¥

The next boundary of concern is the 2-3 dielectric interface,

so the tangential fields are forced to be continuous.

TE TE TE TE
5) E = E or E = E
=d 3 =d 3 = 3 =
x2 |y . #3 |y 5 z3 |y d2 z3|y d2
Bz Bz
-j A — = =j —|A_ cosh{(a¢ _h_)+A_sinh(a _h_) (A.
2A 82 83 3A Y3 3 3B ¥3 3
EIZ
A = ———[A cosh(a¢ h_ )+A_ sinh(a _h )] (A
2A € 3A y3 3 3B y3 3
r3
TE TE TE TE
6) H = or H =
X2 y—d2 x3 y—d2 z2 y—d2 z3 y—d2
B o B «
R y3[A sinh(a _h_)+A_cosh(a _h )] (A.
2B WU_E WU_E 3a y3 3 3B 3 3
2 2 3 3
- 2 % 38r2
A2B X2 = —X—E——[Ashsinh(a 3h3)+AJBcosh(ot 3h3)] (A.
“rZ prB r3 y Y
Substituting in for Aza using (A.94a)
TE % 38r2
- - Y—[A sinh(a _h )+A_ cosh(a _h )] (A
2A 2 | VI > 3n y3 3 3B y3 3
r3 r3
%32 re]
= - —X————[A sinh(e¢ h )+A cosh(a _h )][Y ] (A.
2A [T, 3A y3 3 3B y3 3 2

r3 ¥3
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.93a)

.93b)

them

.94a)

. 94b)

and

95)

.96)

97)

98)

+-99)

100)



Equating (A.96) and (A.100)
Cr2
———[A cosh(e¢ h )+A_ sinh(a _h )] =
€ 3a y3 3 3B y3 3
3
o £
_ y3 x2

-1
[A sinh(a h )+A_ cosh(a _h )] [YTE]
3a y3 3 3B y3 3 2

€
urB r3

TE
1tiplvi y ;
Multiplying both sides by [Y2 cr3]/[cr231nh(ay3h3)]

o
TE y3
A + = = e +
[ 3Acoth(ocy3h3) Asa][Y2 ] lur3[.A3A AaaCOth(aysha)]
- ayacoth(ay3h3) s
A + = - +
3 [YZ pr3 ] A]A[Yz COth(ay3h3) ayS/“rB}
Using (A.92c) and factoring prs/ay3 out of the left hand side,
TE _TE 2
£, X° ¥ #ilo _Au)
B T 7 Baa o:r3 = :z st =
v3 Y +Y

2 s3
Since the above equation is very similar to (A.93a). let

TE TE 2
Y Y +(a _/u )
TE 2 "s3 Y3 "3
3 TE TE
Y O+ Y
2 53

Then (A.104) simplifies to;

TE pr3

A = = A b § —_—
3B 3A 3 o
y3
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(A.101)

(A.102)

(A.103)

(A.104)

(A.105)

(A.106)

As before, the tangential fields at the 4-5 dielectric interface

are now equated.

7 ETE - gTE o ETE N ETE
x5 [y=d x4 |y=d z5 |y=d z4 |y=d
4 4 4 4
Bz Bz
-j A — = =-j —|A cosh(x h )+A sinh(ax h )
5A CS Cq 4A vi 14 4B yv4 4
er5
A = ———[A cosh(a h )+A sinh(a h )]
5A € 48 yva 4 4B va 4
r4
TE TE TE TE
H = H =
5 x5 |y=d qu y=d oE Vg y=d z4 |y=d
4 4 4 4
BanS Bxayq

= A sinh(a¢ h )+A cosh(a h )
5B wpscs wuqe4 4a y4 4 4B yva4 4

(A.107)

(A.108)

(A.109)



o o £
v5 ¥4 r5

—_ = ——————[A sinh(e¢ h )+A cosh(a h )]
4A yva4 4 4B ¥4 4

5B
urs “r4€r4

Substituting in for ASB

o €
TE _  y4 r5

SA"S €
Mra€ra
%ya€rs
ki e ow R D2
5A T

r4 r4

Equating (A.108) and (A.112)

>4
r5
r4
o €
_ y4rs

E
r4 r4

; : ' TE ,
2
Multiplying both sides by [Y5 8r4]/[er551nh(ath4)]

[A coth(ex h )+A ][Y
4A ya4 4 4B

o coth(oe h )
ya 4

v

using (A.94b)

[A sinh(a h )+A cosh(«a
4 v4 4 4B y

[A4A51nh(ay4h4)+Achosh(ay4h4)][Y

———[A cosh(e h )+A sinh(a¢ h )]
€ 4an v4 4 4B v4 4

i +
[A4A31nh(ay4hq) Achosh(athq)][Y

- [A +A coth(x h )]
pr 47 4B ya 4

A4B[Y: +
urq

TE

Y
pr4 5

TE
= -A +
] 4A[Y5 coth(athq) ay4/pr4]
Using (A.92d) and factoring “r4/ay4 out of the left hand side,

TE
Y84+(ay4/“r4)

A = - —_—

4B 4A O
vy

Again this expression is very similar to (A.93a)

TE TE 2
Y Y +(e /u )
yTE _ 5 84 ya x4
4 TE B
W
5 sS4

Then (A.116) is

o
v

Having completed all the other boundary conditions,

the center conductor interface are matched.

As with the TM

(A.

(A.

(A.

(A.

(A,

mode,

electric fields at the interface are intitially set equal to each

110)

o 1 1

112)

113)

.114)

~L15)

116)

+117)

118)

the fields at

the

other. The condition that the electic fields are zero over a finite
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distance in the spatial domain is applied implicitly through the

current or electric field expansion fuctions used in Galerkin’s method.

TE TE TE TE
9) E = _ or E _ = -
X3 y—d3 x4 y—d3 23 y—d3 z4 y—d3
Bz Bz
“3l = A3Acosh(0) sl Achosh(O) {a..119)
3 4
£r3
A3A - 4a 'e— (A.120)
r4
Using this relation in (A.106)
TR >
TR X3 xr3
A3B = - A4A Y3 — (A.121)

Q. E
y3 rd4

Finally, the discontinuity of the magnetic fields due to the

current densities on the center conductor interface is used.

TE TE TE
10) H - =
) X3 |y=d x4 |y=d Jz
3 3
Bxa 3 Bxa 4 TE
b4 cosh(0) + A b4 cosh(0) = J (A.122)
3B WH_E 1B WU € z
373 474
Using (A.118) and (A.121)
WY €
-a, Y P oa yto 24, (A.123)
4a 3 4n 4 B z
X
wu €
A, = - TEl — ; i J:E (A.124)
Y +Yq x

As with the TMY case, it is neccesary to verify that the TEY field
configuration satisfies the boundary conditions independently in the
For this to be true, using the z directed magnetic

spectral domain.

fields at the center conductor interface should yield the same answer

as using the x directed fields.
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TE _ TE - _gTE
X3 y=d3 x4 y=d3 b4
B« B o
q :
2 ¥ coshil) + A. =¥ cHER(0) = =T (A.125)
3B WU_E 4B WY € X
33 474
Using (A.118) and (A.121)
TE TE CHLE, g
- A Y - A Y = - J (A.126)
4a "3 4a 4 Bz b
W €
Aen - TEl TE ; : J;E L)
Y Y Z

Equation (A.127) is equivalent to (A.124) if

TE TE
- d_ /Bz =J, /Bx (A.128)
or
TE TE
Bxe = ﬁsz (A.129)
+4

which was shown to be true for the TE® case in section 2.3.3. Thus,
both the TEY and TMY modes satisfy the boundary conditions in the

spectral domain independently. To complete the solution, substitute

(A.124) into (A.118).

TE
¥ L we €
4 0
Aqs - qu TE ar B : JiE (1R
Y3 +Y4 v4 x

Using (A.124) and (A.130) for AGB and AQA, and substituting back
into the equations for the electric field in region 4, equations
(A.74a-b), and setting y = d3, the fields at the center conductor

interface are;

B

TE : TE _TE Z
Exq = jwpon Z B (p.131a)

.S

TE TE _TE
= =3 2 A.131b
Ez4 jwpDJz ( 31b)



where
TE e _te] "t
Z = [Yq +Y3 ] (A.132)

Again, Y:E and YiE can be thought of as the admittances seen by
the current densities looking outware in each direction from the center
conductor interface and Z - as the parallel combination of these
admittances.

Looking over the derivation, it is evident that there is a pattern
to the determination of the constants. Observing the equations
defining the Y:‘M; (A.27a-b), (A.39), and (A.51), and YfE; (A.93a-b),
(A.105), and (A.117), it is evident that there is a pattern that can be
used to generalize the derivation to an arbitrary number of layers.
Using this pattern, with the geometry in Fig. 2.2, the modal impedances

can be found using the equations in Section 2.3.8.
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